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Ill 

Preface 

In recent years, many observers have expressed concern about "grade 
inflation"—that is, increases in the grades given to students at any given level of 
achievement. Anecdotal reports suggest substantial inflation both in many high 
schools and in postsecondary institutions. The possibility of inflation at the high 
school level is a serious concern to many selective postsecondary institutions, in 
that it may bias their admissions decisions and may make it increasingly difficult 
to distinguish among high-achieving students. Grade inflation would also be 
troubling to many K-12 educators and policymakers. Education reform 
currently focuses on establishing high standards for achievement, and grade 
inflation could threaten that intent. 

Despite the importance of grade inflation and the widespread reports of it, there 
has been little systematic research exploring changes in grading standards— 
which would include grade inflation—in U.S. high schools. 

Accordingly, with support from the College Entrance Examination Board, RAND 
undertook an evaluation of changes in high school grading standards across the 
nation as a whole from 1982 to 1992. This study focused primarily on 
mathematics because it was possible only in mathematics to adjust grades to take 
into account tested achievement. This report presents the results of that 
evaluation. 
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Summary 

In recent years, many observers have maintained that grades in secondary and 
postsecondary institutions have become inflated. Anecdotal reports of grade 
inflation, in some instances seemingly egregious, are common, but few studies 
have attempted to evaluate systematically changes in grading standards over 

time. 

This study explores changes in high school grading standards by comparing the 
senior cohorts of 1982 and 1992. The data used are nationally representative 
surveys, the High School and Beyond study (HSB, for the 1982 cohort) and the 
National Education Longitudinal Study of 1988 (NELS-88, for the 1992 cohort). 
The study explores how the distribution of grades changed over that time, how 
those changes varied across types of students and schools, whether the 
relationship between tested achievement and grades changed between 1982 and 
1992, how grades changed when changes in tested proficiency and course-taking 
were taken into account, and whether the predictors of grades changed over that 
decade. Descriptive analyses were carried out for overall high school grade point 
average (GPA) and for academic GPA in several subject areas. Multivariate 
analyses were restricted to mathematics because the surveys provided equatable 
tests only in that subject, making it impossible to control for changes in proficiency 
in the other subject areas. Efforts were made to use Scholastic Aptitude Test (SAT) 
and American College Test (ACT) scores as surrogates in other subjects, but that 
approach was abandoned after analyses showed substantial changes in the self- 
selection of the tested subsamples between 1982 and 1992. 

The term "grade inflation" typically refers to an increase in the average grades 
attained by students with a given level of proficiency in the material grades are 
supposed to represent. This change in grading standards, however, which is 
called "mean shift" inflation in this report, is not the only way in which grades 
might become inflated. Another form of possible inflation is labeled "decreased 
correlation." This refers to a weakening of the relationship between proficiency 
and grades, such that low achievers are penalized less and high achievers 
rewarded less by the grading system. This report examined both of these 
possible changes in grading standards. 

Despite the widespread discussion of grade inflation, these analyses did not 
show substantial grade inflation between 1982 and 1992. Indeed, they suggested 



that if changes in tested proficiency are taken into account, grades were deflated 

over the period, at least in academic mathematics courses. Simple descriptive 

analyses showed an increase in mean grades and in the percentage of grades 

above a grade of B or better, but these increases were mostly very small. For 

example, overall academic GPA increased by only 0.07 on a scale of 0 (F) to 4.3 

(A+)—that is on a scale in which the change from a B- to a B would be 0.30. The 

frequency of grades of B or better increased by 3.1 percentage points. Overall 

changes in specific subject areas were similarly small. However, the increase was 

considerably larger among high-income students and in urban schools: Overall 

mean grades increased by 0.21 for the former group and by 0.22 in the latter. 

During the same period, however, performance on the mathematics tests 

included in the HSB and NELS surveys, which were linked to be on the same 

scale, increased by about one-third of a standard deviation.1 At the same time, 

the relationship between performance on the test and academic mathematics 

GPA increased. After disattenuating for unreliability (which was greater in HSB 

than in NELS), the correlation increased from 0.47 to 0.58. When the increase in 

tested proficiency was controlled, mean grades actually declined for all but high- 

scoring students. Because of the increase in the correlation between test scores 

and GPA from 1982 to 1992, this decrease in adjusted GPA was larger among 

lower-scoring students; it was 0.16 for students whose scores were at the mean 

and 0.35 for students whose scores were a standard deviation below the mean. 

Between 1982 and 1992, the number of mathematics courses taken by the average 

student increased markedly, as did enrollment in some courses traditionally 

considered college preparatory. To the extent that the data allow adjustment for 

these trends in course-taking, however, they appeared to have had little effect on 

changes in grades. Controlling for changes in both course-taking and tested 

proficiency again showed deflation of mathematics grades, albeit slightly less 

substantial than appeared when only test scores were controlled. A multivariate 

analysis of the prediction of academic mathematics GPA by student- and school- 

level variables found only modest changes from 1982 to 1992. 

Throughout this report, we maintain a distinction between "linking" and "equating" as 
methods of placing scores from two different tests, or two different forms of the same test, on the 
same scale. In modern usage, "linkage" is a more general term that refers to a range of statistical 
techniques that place the scores from two tests on a single scale. Linkage does not necessarily make 
tests functionally equivalent; for example, linked tests may contain somewhat different content, so 
that it is not a matter of indifference to some individuals which test they take. In contrast, "equating" 
refers to methods that endeavor to make tests as nearly equivalent as is practical. For example, 
successive forms of the SAT are equated, so it is not a matter of importance to students which form 
they take. The NELS and HSB tests were not constructed to be equivalent and, therefore, a linkage of 
the two cannot be considered an equating. The implications of this for our findings are discussed 
below where pertinent. 



The analyses reported here have several important limitations. The test scores 

used to adjust for changes in proficiency were not ideal. Although the NELS and 

HSB mathematics tests had sufficient similarity and overlap to permit use of a 

conventional equating method, they were not equivalent, and differences 

between them may have contributed to the findings, e.g., the stronger 

relationship between grades and scores found in NELS. More important, the 

HSB and NELS tests were general-purpose survey tests and do not provide a 

measure of mastery of the specific content pertinent to grades in each course. 

Coursework variables were also limited in important ways. Courses with similar 

titles may vary markedly in content, for example, and the mix of content 

subsumed by any given course title might have changed between 1982 and 1992, 

perhaps as a result of the large increases in course-taking. Thus, analyses using 

better variables might have produced somewhat different results, but given the 

pattern of results reported here, it seems unlikely that they would have shown 

score inflation. 

What accounts for the inconsistency between this study, which found no 

evidence of overall grade inflation between 1982 and 1992, and the widespread 

reports of high school grade inflation? There are at least three possibilities. One 

is that inflation has occurred but not during the decade examined here. A second 

possibility is that increases in grades in some schools, such as schools serving 

high-income families, may have attracted attention and may have been 

misconstrued as an indication of more widespread grading changes. Yet another 

possibility is that grading standards were not as harsh in the past as some 

observers believe and that examples of overly lenient grading would not be 

restricted to the present, if similar information were available about earlier 

cohorts. 

Grading standards warrant further research, not only because of their 

importance to selective postsecondary institutions but also because of the 

centrality of standards to the current reform movement in K-12 education. It 

would be important to explore, for example, whether grades were inflated 

during other time periods, and the incidence and distribution of overly lenient 

grading would be an important issue regardless of trends over time. Further 

research should not be restricted to the use of large survey databases, which are a 

good tool for providing a first look at issues of this sort but lack the detail needed 

to explore them in depth. 
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1. Introduction: The Importance of 
Grading Standards 

Although colleges and universities rely on many factors in selecting students for 
admission, high school grades and scores on admission tests such as the 
Scholastic Aptitude Test (SAT) or the American College Test (ACT) are typically 
the most important. Colleges rely heavily on test scores and grades because they 
are believed to provide important and not entirely overlapping information 
about students' likelihood of success in college. 

Although the use of the SATs and ACTs has been the subject of intense debate in 
recent years, the use of high school grades as a basis for admissions is also 
problematic for two reasons. First, grades are affected by both subjectivity and 
the varying standards and purposes of teachers' grading practices (Pilcher, 1994; 
Brookhart, 1993; Stiggins, Frisbie, and Griswold, 1989). Admissions officers may 
try to address inconsistencies in grading by taking into account the 
characteristics and standards of individual high schools, but their ability to do so 
is limited, and they cannot take into account inconsistencies within schools. 
Second, many observers have argued that grades in both secondary and 
postsecondary institutions have become inflated in recent years (Turnbull, 1985; 
Adelman, 1982; Keith, 1982). That is, they have argued that any given level of 
performance receives a higher average grade now than in years past. 

High school grade inflation would be a concern to postsecondary institutions for 
two reasons. It could erode their ability to identify promising students—for 
example, if grades of A encompassed a wide range of performance, or if inflation 
varied substantially across schools. Some observers maintain that the shift has 
been so substantial that grade point averages (GPAs) from some schools are no 
longer useful to selective postsecondary schools attempting to identify able 
students. In addition, some observers are concerned that overly lenient high 
school grades may give students unrealistic expectations concerning their ability 
to handle the demands of postsecondary education. 

However, despite these claims, the research evidence showing grade inflation 
over time is scarce.  Only a few studies have analyzed national data to examine 
whether the relationships between student grades and test scores have changed 
over time. Generally, these studies show that grade inflation is more prevalent in 
certain subjects, such as mathematics, science, and foreign languages, or for 



certain students—those at the higher end of the grade point distribution 

(Adelman, 1982; Ziomek and Svec, 1995). 

In addition, understanding changes in grade distributions is not as simple as 

quantifying them. Changes in the grade distribution may stem from many 

factors other than trends in grading standards, such as changes in actual student 

proficiency, in course-taking patterns and track placement, and in the 

characteristics of the student population (such as an increase in the proportion of 

students for whom English is a second language). Moreover, changes in grading 

standards may have varied among important subgroups of the population, such 

as high- and low-achieving students, minority and nonminority students, rich 

and poor students, or students in urban and suburban schools. Understanding 

variations among important subgroups may be important for determining policy 

responses to changes in grading practices. 

In response to these gaps in our knowledge, we conducted a series of descriptive 

and multivariate analyses of nationally representative data between 1982 and 

1992 to understand the trends in high school grades and their correlates over the 

course of a decade. 

Research Questions 

We analyzed nationally representative data to examine trends in high school 

grades between 1982 and 1992, looking not only at changes in the grade 

distribution over time but also at concomitant changes in the educational system 

and in the characteristics of the student population that might have contributed 

to the trends or may help interpret them. In this report, we address the following 

research questions: 

• Over the decade from 1982 to 1992, were there substantial changes in the 

distribution of high school grades, either overall or for certain subjects? If so, 

how substantial has it been and how has it varied (e.g., between males and 

females, minority and nonminority students, and poor and rich students)? 

• Did trends in grading standards vary across types of schools? 

• Did the relationship between grades and student performance on 

achievement tests change over time? 

• How did grades change when the influence of changes in tested proficiency 

and course-taking is taken into account? 

• What student- and school-level factors influenced grades, and did those 

relationships change substantially between 1982 and 1992? 



Analytical Approach 

We addressed these questions by analyzing nationally representative data on 
student background and family characteristics, school characteristics, and 
student course-taking during secondary school. We employed a variety of 
exploratory and multivariate analyses. 

A comparison of High School and Beyond (HSB) to the National Education 
Longitudinal Study of 1988 (NELS)—both nationally representative longitudinal 
databases collected by the U.S. Department of Education—provides information 
on changes in grading and on factors that may have influenced them. These 
databases include information on student, family, and school characteristics; 
course-taking; track placement; grades; and short test batteries in different 
subject areas (e.g., mathematics and reading). In addition, SAT and ACT scores 
are available for some students. Although the HSB and NELS test batteries have 
important differences, they have been linked both by the Educational Testing 
Service (ETS) and by RAND. The linking of these test batteries is sufficiently 
strong to justify using the linked scores as a basis for judging changes in grading 
standards (see Berends, Sullivan, and Lucas, 1999). The richness of HSB and 
NELS makes them the best data, to date, for addressing the questions noted 
above. 

Organization of the Report 

In the next section, we briefly review the research on grade inflation at both the 
secondary and postsecondary levels. In Section 3, we discuss the data and 
methods used in the analysis. In Section 4, we present descriptive comparisons 
of grade distributions in 1982 and 1992 by different student and school 
characteristics. Section 5 focuses on the relationship between mathematics 
grades and both tested proficiency and course-taking patterns. In Section 6, we 
discuss the results from cross-sectional models that examine the variation in 
grading standards across different school contexts. In Section 7, we summarize 
the conclusions and discuss the implications of our analysis. 



2. Grade Inflation: Anecdotes and 
Systematic Evidence 

A number of editorials have appeared in the news about the alleged problem of 

grade inflation in America's secondary and postsecondary institutions. For 

example, Zirkel (1999) reported on the graduation ceremonies of two schools, 

each of which had 16 valedictorians who all achieved a 4.0 (straight A) average 

during their four years of high school. One observer wrote of a school in 

Pennsylvania in which an A average may just barely get a student to rank in the 

top 50 in his or her class because 48 of the 950 graduates received a 4.0 average 

for their high school career (Solomon, 1998a, 1998b). 

Such anecdotes, and there are many others, have led some to conclude that grade 

inflation is a social and economic cancer. The term "grade inflation" is a 

euphemism, but the phenomenon is not the benign or insignificant statistical 

artifact that its name implies. Rather, grade inflation implies a kind of 

educational fraud, and if present, it would present hard evidence of what the 

Nation At Risk report termed "a rising tide of educational mediocrity" (National 

Commission on Excellence in Education, 1983, p. 5). 

Despite these anecdotes, generalizable empirical evidence about grade inflation 

is surprisingly thin. Here, we briefly review the studies that examine grade 

inflation at the secondary and postsecondary levels. 

Grade Inflation in Secondary Schools 

The research evidence showing grade inflation over time in secondary schools is 

scarce. We know of only two studies that have examined changes in the 

distribution of grades over time for different student cohorts. Only one of these 

examined changes in the GPA distribution by student test scores. 

One study (Adelman, 1982) analyzed student transcript data for several cohorts 

between 1969 and 1981. Adelman examined the discrepancy between students' 

self-reported grades and transcripts to gauge the inflation of self-reported grades 

and investigated changes in grades on transcripts between 1975 and 1981. Not 

surprisingly, when comparing student self-reported grades to the grade 

information obtained directly from the students' transcripts, Adelman found that 

the student self-reports were inflated in all cohorts. For example, during the 



1975-1981 period, the GPA for academic track students was 2.83 in their 

transcripts compared to their self-reported GPA of 3.09. Examining changes over 

time in the transcript grades for different courses, Adelman found an increase in 

both high and low grades. That is, for students in college-track courses, although 

achievement scores declined, both the percentage of As and Bs and the 

percentage of Ds and Fs increased, and the percentage of Cs decreased. 

Adelman summarizes his analyses across courses by stating, "Grade inflation, 

while significant, was not as pervasive during this time period as assumed" (p. 

1). Grade inflation was more pronounced in mathematics, and to some extent 

science and foreign languages, as well as among students in the general track, 

which expanded significantly during the time period analyzed. For example, 

between 1975 and 1981, there was a 16.5 percent increase in the mean grades for 

algebra 1, a 12 percent increase in advanced mathematics, and a 16 percent 

increase in both Latin and general science. Yet, for a number of other course 

titles (e.g., sociology, literature, and health education), grades remained stable or 

even declined over this time period. 

Ziomek and Svec (1995) found evidence of grade inflation in the cohorts 

graduating from 1990 to 1994 in over 5,000 public schools. They placed schools 

into deciles based on their mean ACT scores and then examined changes in both 

grades and ACT scores within each decile. They included only students who had 

complete ACT scores and who had taken at least three courses in at least three of 

the four content areas of mathematics, science, social studies, and English. 

Ziomek calculated the mean difference in GPAs, standardized within deciles, 

between graduates in their baseline year of 1990 and the graduates in each of the 

following four cohorts. 

They found that, overall, GPAs increased from 2.94 in 1989-1990 to 3.04 in 1993- 

1994, whereas ACT scores remained roughly constant within each of the deciles. 

They also found that 

• The increases in standardized grade differences were more prominent in 

later cohorts than in earlier ones. For example, in 1993-1994, the overall 

average standardized difference of GPAs across ACT deciles was 0.16 

compared with the 0.03 difference in 1990-1991. 

• The large increases in the standardized differences of GPAs occurred within 

the upper deciles of the ACT distribution (i.e., deciles 7-10). For instance, in 

the 10th decile, the standardized difference of GPAs was 0.21 in 1993-1994 

compared with 0.06 in 1990-1991, whereas the standardized difference in the 

1st decile was 0.12 in 1993-1994, even though that increased from the 0.03 

difference in 1990-1991. 



•     Grade inflation appears to be especially significant for GPAs greater than 

3.50 across all ACT decile categories. For example, the percentage of 

students in the 3.5-4.00 GPA range and scoring in the 10th ACT decile 

increased from 26 percent in 1989-1990 to 33 percent in 1993-1994. For the 

most part, the percentages of students with GPAs below 3.00 and scoring in 

the 10th ACT decile declined over the time period examined. 

In short, they found evidence of grade inflation over the time period studied, 

particularly for students at the higher end of the grade point distribution. 

Grade Inflation in Colleges and Universities 

Institution-specific reports of grade inflation in postsecondary institutions 

abound (see Zirkel, 1999; Stone, 1995).  For example, Alexander (1993) reported 

that in the early 1990s, 80 percent of Princeton undergraduates received nothing 

but As and Bs, and at Stanford only 8 percent received Cs and Ds and none 

received Fs, and at Williams, nearly half graduated with honors. In a nationally 

representative sample of nearly 5,000 undergraduates, Levine (1994) examined 

the proportion of students with GPAs of A- or higher and found that the figure 

quadrupled between the late 1960s to the early 1990s. Other studies of colleges 

and universities in the United States have found that GPAs of students receiving 

bachelor's degrees rose nearly 0.5 points between the mid-1960s and 1980s 

(Rogers, 1983; Kolevzon, 1981; Birnbaum, 1977). 

Simple changes in the distribution of grades, without consideration of actual 

changes in achievement, need not indicate grade inflation, but there is some 

evidence that changes in postsecondary grades do at least in part reflect inflation. 

Stone (1995) argued that the reported rise in undergraduate GPAs was not 

accompanied by an increase in tested achievement as measured by the Graduate 

Record Exam (GRE) over this time period. The GRE is not designed as an 

achievement measure, so this finding is not definitive, but it is suggestive. 

Indeed, the simple magnitude of changes in grading described by Levine and 

others adds credence to the hypothesis that grades have become inflated. 

The focus of our analyses is grade inflation at the high school level. In the 

sections that follow, we focus on nationally representative data of high school 

students—their GPAs, tested achievement, and other individual and school 

characteristics—to examine whether grade inflation exists and the factors that 

may explain changes in the relationship between achievement and grades. 



3. Data and Methods 

We analyzed nationally representative datasets that describe the experiences of 
high school students in the United States in the early 1980s and early 1990s. The 
databases are the HSB survey and NELS. 

High School and Beyond 

HSB is a nationally representative, longitudinal study that includes an array of 
information on students and schools. HSB is a two-stage stratified probability 
sample with schools as the first-stage units and students within schools as the 
second-stage units. In the first stage, 1,100 schools were selected and in the 
second stage, about 36 students were randomly selected in each school. Some 
types of schools were oversampled to ensure that adequate numbers of students 
were available in the subpopulations of interest. We analyzed the subset of the 
total sample of students who participated in the base year as sophomores and the 
first follow-up as seniors (see Jones et al., 1983a) and who had information from 
the school administrator surveys, student questionnaires, cognitive tests, and 

transcript files. 

As part of the second follow-up, information was collected from student 
transcripts, including student course-taking histories and grades. Of the total 
HSB sample of about 26,000 students who were seniors in 1982, over 18,000 were 
randomly selected to constitute the target sample for the transcript study (Jones 
et al., 1983b). The sampling procedures were a compromise between two 
competing objectives: (1) the need for subgroup samples of sufficient size for 
complex multivariate policy analyses, and (2) the desire to avoid undue losses in 
statistical power because of disproportionate sampling. Of the nearly 18,000 
students in the target sample, transcripts were received for 88 percent, resulting 
in a sample of 15,941. Of these students, about 1,000 transferred during their 
high school career and were deleted from our sample. Additional cases were 
dropped because they lacked needed information from the school administrator 
survey, the student survey, or cognitive testing. Thus, the final analysis sample 
in this report for HSB is roughly 12,400 students. 



National Education Longitudinal Study 

NELS is a nationally representative database that includes detailed information 

from students, teachers, schools, parents, and student transcript data (Ingels et 

al., 1995). The 1988 base-year NELS included about 25,000 eighth grade students 

in 1,035 schools. Some school types were oversampled to ensure that adequate 

numbers of students were available in subpopulations of interest. Students in 

NELS were followed up in the tenth grade (1990), in the twelfth grade (1992), and 

two years after high school (1994). A fourth follow-up was conducted in 2000. 

These data contain extensive information about the achievement and school 

experiences of students before high school entry, on school organization in 

middle and high school, and on students' family and demographic characteristics 

and on experiences beyond high school. In each of the first three waves of NELS 

(grades 8,10, and 12), students were tested in mathematics, science, reading, and 

history. 

The second follow-up of NELS also included a high school transcript study. 

Transcripts were obtained for over 14,000 students who participated in NELS. 

Because we required information from student and school administrator surveys 

and cognitive achievement tests, the final sample for this report was about 11,500 

students. 

Measures 

The analyses reported here used both student-level and school-level variables. 

Most of the school-level variables are aggregates of student variables, but some 

(e.g., school locale) have no student-level counterpart or were derived from a 

different source. The definitions of all variables were matched across the HSB 

and NELS datasets; we note below where this required modifications of the 

original variable. 

The private-school samples were not comparable in HSB and NELS. They used 

different sampling frames, and NELS differentiated the private sector into 

additional categories. Hence, we did not examine the difference between public 

and private schools. Private-school students were included in the file used in the 

descriptive analyses so that we could carry out exploratory analysis of private 

and public schools but were deleted from the files used in all multivariate 

analyses. 



Student-Level Variables 

GPAs. The primary focus of this study is student grades and possible changes in 

the distribution of grades between 1982 and 1992. Information for student GPAs 

was taken from the transcript files to create overall and mathematics-specific 

GPAs—using the conventional scale where 4.0 is an A, 3.0 is a B, 2.0 is a C, 1.0 is 

a D, and 0 is an F. As is conventional, in schools that used pluses and minuses, a 

plus added 0.3, and a minus subtracted 0.3. 

All courses listed on seniors' high school transcripts were included. Almost all 

courses were identified in the transcript records as having been taken in grades 9 

through 12. None was identified as being taken in earlier grades, but less than 

half of 1 percent of records lacked an indicator of the grade in which the course 

was taken. These records were included. 

Descriptive tabulations of overall GPA excluded no courses. In specific subject 

areas, however, analysis was restricted to GPA in academic courses. The 

classification of courses as academic was based on the 1998 revision of the 

Secondary School Taxonomy, or SST (National Center for Education Statistics, 

1999). The SST is a hierarchical classification based on a more detailed grained 

classification called the Classification of Secondary School Courses (CSSC), in 

which courses are placed into broad subject areas such as mathematics and then 

are broken down into progressively finer classifications. We excluded courses in 

categories noted as vocational, remedial, special education, and English as a 

second language. Our rules were as follows: 

• Mathematics: exclude SST category 1_19 (vocational, etc.) and CSSC codes 

starting with 52,54, or 56 (primarily special education). 

• Science: include all science and engineering courses with SST codes starting 

with 1_2, but exclude courses with CSSC codes starting with 52,54, or 56. 

• English: include all courses with SST codes starting with 1_3 but exclude 

SST = 1_35 (English as a second language) and CSSC codes starting with 52, 

54, or 56. 

Student Achievement The independent measure of student achievement 

examined here is the mathematics tests in HSB and NELS, which have been 

linked over time to place them on the same scale. The tests were linked using 

Item Response Theory (IRT) methods (Lord 1980; Hambleton 1989; see Appendix 

A for more details of the linking procedures used in this study). When the 

assumptions of IRT are met, the estimation of item parameters allows one to 
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substitute items without changing the estimates of student proficiency. 

Similarly, when common items are included in different tests, these items can be 

used as anchors to link scores on the two tests. 

The NELS and HSB mathematics tests were sufficiently similar in content and 

contained enough common items to permit linking, and research to date suggests 

that the tests contain sufficient overlap across the cohorts to allow useful 

comparisons of students' mathematics achievement in secondary school (see 

Berends, Sullivan, and Lucas, 1999; Rock et alv 1985b; Rock and Pollack, 1995).1 

However, it is important to bear in mind that although the scales of the two tests 

are linked to account for differences in difficulty, the tests are different enough 

that they cannot be considered fully equivalent even after linking. Several 

instances in which remaining differences between the tests may have affected our 

analyses are noted below. Linking of the NELS and HSB tests was not possible in 

other subject areas. 

Race/Ethnicity. Both surveys included items to identify students' racial/ethnic 

group. Descriptive analyses distinguished between African Americans, 

Hispanics, Asians, and non-Hispanic whites. For reasons of sample size, Asians 

were omitted from multivariate analyses. For these analyses, we included 

dummy variables to indicate African American (or black) and Hispanic (or 

Latino); the omitted comparison group was non-Hispanic whites. 

Gender. Gender was included as a dummy variable, equal to one if the student 

was female. 

Mother's Education. Each high school senior cohort survey provided 

information to create a measure for mother's years of education, coded as 10 if 

the mother did not finish high school, 12 if the mother was a high school 

graduate, 14 if the mother attended some college, 16 if the mother received a 

four-year college degree, and 18 if the mother received a graduate or professional 

degree. 

Family Income. Income posed a particularly challenging problem. First, the two 

surveys used different income intervals in the question given to students. HSB 

used eight response categories whereas NELS used 14, and the endpoints for 

1To measure a broader range of abilities and the extent of cognitive gains between eighth and 
twelfth grades, NELS included various forms of the tenth and twelfth grade tests to avoid floor and 
ceiling effects. For example, tenth graders in the first follow-up test administration were given 
different forms of the test depending on how they scored in the eighth grade base year. In 
mathematics, there were seven forms, and in reading there were five forms, all differing in difficulty 
to provide better estimates of achievement throughout the proficiency distribution. (For further 
details on the psychometric properties of the NELS tests, see Rock and Pollack, 1995).  It was possible 
to link across all these NELS mathematics forms and the NELS and HSB cohorts. 
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many of the eight intervals used in HSB did not correspond to those used in 

NELS. In addition, when incomes are changing nonuniforrnly, it is not apparent 

how income categories should be adjusted to make categories comparable over 

time. For example, depending on assumptions about how income differences 

affect performance, one might want to keep income categories fixed in terms of 

purchasing power, in terms of the percentages of household in each, or in terms 

of their relationship to some critical level of income. 

We first rescaled the HSB income categories to 1992 dollars by multiplying the 

endpoints of each interval by the change in the Consumer Price Index (CPI) from 

1982 to 1992. We then collapsed the eight income categories into five to make the 

endpoints of the categories more similar to the endpoints of NELS categories. 

The raw and adjusted income values and the categories into which we placed 

each of the original ranges are shown in Table 3.1. We then collapsed the 14 

NELS income categories into five by aligning the endpoints of the intervals as 

closely as possible to the inflated endpoints of the collapsed HSB categories. This 

is shown in Table 3.2. 

In practice, this five-level income categorization turned out not to be useful in 

some analyses, and it was not comparable to some earlier work that considered 

the relationship between low income and grades (U.S. Department of Education, 

1994). Therefore, although we used all five categories in descriptive analyses, we 

collapsed them further into two categories for multivariate analyses. The low- 

income category of the dichotomous variable included the lowest two of the five 

income categories in Table 3.2 and had a cutoff roughly equal to 140 percent of 

the poverty index for a family of four in 1992. 

High School Program. The HSB and NELS dataset included a question 

measuring the students' perceptions of their secondary school track as academic, 

general, or vocational. These measures provide only limited information about 

Table 3.1 

Raw and Adjusted Income Ranges and RAND Categories, HSB 

Midpoint High 
CPI-Adjusted to 1992 Dollars 

Low Low Midpoint High Category 

  4,000 7,999   5,815 11,630 1 
8,000 11,500 14,999 11,631 16,719 21,807 2 

15,000 17,500 19,999 21,808 25,442 29,076 3 
20,000 22,500 24,999 29,078 32,712 36,346 3 
25,000 27,500 29,999 36347 39,981 43,615 4 
30,000 35,000 39,999 43,617 50,885 58,154 4 
40,000 45,000 49,999 58,155 65,424 72,693 4 
50,000 72,694 — — 5 
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Table 3.2 

Raw Income Ranges and RAND 
Categories, NELS 

Low Midpoint High Category 

  500 999 
1,000 2,000 2,999 
3,000 4,000 4,999 
5,000 6,250 7,499 
7,500 8,750 9,999 

10,000 12,500 14,999 2 
15,000 17,500 19,999 2 

20,000 22,500 24,999 3 
25,000 30,000 34,999 3 

35,000 42,500 49,999 4 
50,000 62,500 74,999 4 
75,000 87,500 99,999 5 

100,000 150,000 199,999 5 
200,000 5 

students' high school experience, but it is the case that this "track" variable 

provides useful information about students' programs and their placement 

within the school (Lucas, 1999; Gamoran and Berends, 1987; Gamoran, 1989). 

The academic group includes students who typically take courses for college- 

bound students (either an officially mandated program of courses or an 

unofficial sequence within the curriculum). Because we were interested in 

grading standards as they pertain to college admissions, we created a dummy 

variable for the academic track. The omitted group was all other students; we 

did not distinguish between students in the vocational track and the general 

track. 

Course-Taking. Because we were concerned with the possible effects of changes 

in course-taking on the distribution of academic grades, we needed to measure 

the specific types of mathematics courses taken. For multivariate analyses, 

mathematics courses were classified using the 1998 revision of the SST (National 

Center for Education Statistics, 1999). Mathematics is broken into nine broad 

categories: 

1. General mathematics, 

2. Consumer mathematics, 

3. Pre-algebra, 

4. Algebra 1, 

5. Geometry, 



13 

6. Algebra 2 through pre-calculus, 

7. Advanced mathematics, 

8. Unified mathematics, and 

9. Occupational^ related mathematics. 

We considered categories 3 though 7 to be academic courses and created 

variables to distinguish among them. Of these, only one was subdivided in the 

SST: advanced mathematics was subdivided into calculus, advanced placement 

and international baccalaureate, and other. The content of many "unified 

mathematics" courses appears to be academic; the description of the revised SST 

notes that "Unified Mathematics was created to hold the unified coursework, 

previously distributed among the Algebra 1, Geometry, and Advanced 

Mathematics—Algebra subcategories" (National Center for Education Statistics, 

1999, p. 29). However, it was not possible to determine the intended content 

coverage of these courses or whether that intended content was similar in 1982 

and 1992. Moreover, these courses were relatively uncommon, particularly in 

HSB. Accordingly, these courses were included in our academic mathematics 

GPA measure, but we did not create an additional variable indicating 

coursework of this type. 

Exploratory analysis indicated that it was reasonable to use only the first level of 

the SST classification in mathematics. 

For disentangling changes in coursework from changes in grading standards, the 

most important consideration is the mix of coursework across types that might 

have different standards. Accordingly, we created variables indicating the 

proportion of each student's academic mathematics marks coming from courses 

of four types: algebra 1, algebra 2 (as defined above), geometry, and advanced. 

The proportion of marks from all other academic mathematics courses was 

necessarily omitted, as it is a linear function of the four specified proportions. 

School-Level Variables 

Mean Achievement. The test scores of the students in each school were 

aggregated to obtain a school-level achievement measure. 

School Racial/Ethnic Composition. School administrators in HSB and NELS 

were asked about the proportion of various population groups who attended the 

school. Using this information, we were able to create two school-level variables 

that measured the proportions of African American and Hispanic students who 

attended each school. The alternative would have been to create these measures 
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by aggregating information from our samples. Both approaches have 

drawbacks; aggregating student-level data from our reduced samples might have 

misrepresented the composition of some schools, whereas relying on data from 

aciministrators makes the level 1 (student) and level 2 (school) variables in our 

multilevel models not precisely comparable. 

School Mother's Education. The student-level measure of mother's educational 

attainment was aggregated to the school level by taking the mean. 

School Income. The school-level income variable was the proportion of students 

in the low-income category of the income dichotomy described above. 

School Locale. Schools were either urban, rural, or suburban.2 We created 

dummy variables for each with suburban as the reference (omitted) category. 

School Course-Taking. The school course-taking variables were the means of 

the four proportions noted above. For example, one of the student-level 

variables was the proportion of a student's academic mathematics marks 

stemming from courses in algebra 1. The school mean of that variable is the 

average proportion of academic mathematics marks from courses in that 

category across sampled students. 

Methods 

Sample Weighting 

Because students were sampled for both HSB and NELS with varying 

probabilities, it was necessary to weight the data to obtain comparable, 

representative results. Both surveys offer a variety of sampling weights 

representing the wave of the survey and the instrument from which variables are 

derived. For example, the data include base-year test weights for use with 

^Locale is a seven-digit code on the Common Core of Data (CCD) of the U.S. Department of 
Education, defined as: 1. large city—a central city of a consolidated metropolitan statistical area 
(CMSA) or metropolitan statistical area (MSA), with the city having a population > 250,000; 2. 
midsize city—a central city of a CMSA or MSA, with the city having a population < 250,000; 3. urban 
fringe of a large city—any incorporated place, Census-designated place, or nonplace territory within 
a CMSA or MSA of a large city and defined as urban by the Census Bureau; 4. urban fringe of a 
midsize city—any incorporated place, Census-designated place, or nonplace territory within a CMSA 
or MSA of a midsize city and defined as urban by the Census Bureau; 5. large town—an incorporated 
place or Census-designated place with a population > 25,000 and located outside a CMSA or MSA; 6. 
small town—an incorporated place or Census-designated place with a population < 25,000 and > 
2,500 and located outside a CMSA or MSA; 7. rural—any incorporated place, Census-designated 
place, or nonplace territory designated as rural by the Census Bureau. The usual practice is to 
combine these into three categories: urban = 1,2; suburban/large town = 3,4,5; and rural/small 
town = 6,7. 
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students who were administered the base-year tests, as well as base-year 

questionnaire weights for students administered the base-year questionnaire. 

Because some students were administered the base-year questionnaire but not 

the base-year test, these weights are not identical. The weights vary more 

substantially across waves because of attrition. In addition, the sample for whom 

transcripts were obtained was substantially different from that for whom 

questionnaire data were obtained. 

No weights were provided for the specific subsample we used (students with 

valid data from the questionnaire, the tests, and transcripts), and the database 

does not include the level of detail that would have allowed us to create those 

weights. Accordingly, we conducted a series of detailed analyses to determine 

how adequate one of the existing weights would be for our purposes. These 

analyses are summarized in Appendix B. We concluded that the existing 

transcript weights were adequate for our purposes, and all weighted analyses 

reported here use those weights. These weights were restandardized so that the 

sum of the weights was equal to 10 times the number of observations, for reasons 

described in Appendix B. 

Descriptive Analyses 

The first stage in our analysis was a series of descriptive analyses to explore 

changes between 1982 and 1992 in the distribution of grades, both overall and for 

specific groups of students and schools. These descriptive analyses are not a test 

for grade inflation because these they do not hold constant academic 

achievement (proxied later by test scores) or changes in course-taking. However, 

understanding the extent and location of changes in the grade distribution may 

help explain common perceptions of grading changes and provide a useful 

context for evaluating changes in grading standards. 

These descriptive analyses were carried out both for total academic GPA and for 

mathematics grades. We compared histograms of the entire grade distributions 

and explored four summary measures (means, medians, and percentages above 

B and B+). We do not present all of the measures but comment when they 

provided substantially different views. Student and family characteristics used 

in the descriptive analysis included race/ethnicity, gender, mother's education, 

track, and several income variables, including both a poverty dichotomy and a 

categorical income variable, as described above. The only school variable used in 

descriptive analyses was locality (urban, rural, suburban). 
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Multivariate Analyses 

To infer changes in grading standards from changes in the simple distributions in 

grades, however, it is necessary to take into account two concurrent changes: 

trends in the measured proficiency of students and changes in the courses they 

took. During the period in question, there were some changes in the measured 

achievement of students, particularly certain groups of students (Berends, 

Sullivan, and Lucas, 1999; Campbell, Hombo, and Mazzeo, 2000; Koretz, 1992). 

An increase in grades accompanied by an increase in measured achievement 

might not signify inflation. In addition, one key reform in many states during 

the 1980s was an increase in graduation requirements for students (Murphy, 

1991). Thus, changes in grades may be a reflection of the changes between the 

early 1980s and 1990s in the mix of courses that students took during their high 

school careers. 

Neither of these concurrent trends can be fully addressed analytically. To 

estimate changes in grading standards, one ideally would want to control for 

measures of achievement in the specific domains taught in each of the relevant 

courses, and none of the assessments available to us were that detailed. 

Controlling for changes in the courses taken is complicated by numerous factors. 

For example, courses with the same name—say, algebra 1—may be very different 

in content and difficulty, and one cannot assume that the mix of content and 

difficulty across algebra 1 courses would stay constant if the proportion of 

students enrolling in these classes increased substantially. 

Nonetheless, steps can be taken to help disentangle these concurrent trends from 

changes in grading. In mathematics, but not in other subjects, we could link the 

mathematics tests aciministered in HSB and NELS and use the linked scores to 

control for changes in overall proficiency in commonly taught aspects of 

mathematics. We explored this approach using ACT and SAT scores to control 

for proficiency in other areas. However, we found indications of substantial and 

changing selectivity in the subsamples of HSB and NELS that had scores from 

these tests and concluded that it was not feasible to use them in a comparable 

manner to control for proficiency differences (see Appendix C). 

Examining the possible effects of changes in course-taking was more complex. 

We again focused on mathematics and began by examining changes in 

enrollment patterns and in the grade distributions in broad categories of courses 

(e.g., algebra 1 and geometry). We then explored whether differences in grades 

among groups of courses reflected characteristics of the classes or the proficiency 

of students. We created coursework indicator variables for inclusion in 
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multivariate models predicting mathematics GPA. The analyses of proficiency 
and coursework changes and their effects are presented in Chapter 5. 

To explore the influence that other student and school characteristics may have 
on grades, we estimated a series of multilevel models. In these models, 
mathematics grades in 1982 and 1992 are a function of student characteristics 
(e.g., gender, race/ethnicity, socioeconomic status, and course-taking patterns) 
and school characteristics (e.g., locale, school income, and school racial/ethnic 
composition). The results of these analyses are reported in Section 6. 

The NELS and HSB data are clustered because of the multistage sampling design. 
This clustering does not affect parameter estimates but it does bias variance 
estimates. The multilevel models used in the analyses reported in Chapters 5 
and 6 take into account clustering of observations within schools (see Appendix 
D). No further adjustments for clustering were made. 
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4. Shifting Grades over a Decade? 
A Descriptive Analysis 

In this section, we provide descriptive information on changes in the distribution 

of academic grades, overall and for important groups of students and schools. 

These changes do not constitute evidence of grade inflation (or of other changes 

in grading standards) because they do not take either course-taking or student 

proficiency into account. However, they do help explore common perceptions of 

grading changes and provide a context for investigating inflation. Following a 

description of total academic GPA, we provide less-detailed information about 

GPA changes by subject. 

Total Academic GPA 

Despite the widespread perception of grade inflation, the overall distribution of 

academic grades showed only modest changes between 1982 and 1992, with 

slight decreases in the frequency of grades at most levels equal to or lower than 

C+ and slight increases at higher levels. The percentage of students with GPAs 

of C+ or lower declined, whereas the percentages receiving GPAs of B- through 

A increased (Figure 4.1). The mean GPA increased only from 2.56 to 2.63. The 

D-       D      D+ 

Grade point average 

EZZ11982HSB 1992 NELS 

Figure 4.1—Overall Distributions of Academic GPA, 1982 HSB and 1992 NELS 
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percentage of students receiving a GPA of 3.0 or higher increased from 42.0 to 

46.2, and the percentage of students with a GPA of 3.3 or higher increased from 

27.7 to 30.8. 

These small increases in GPA varied little among racial/ethnic groups. Only 

Hispanics showed a substantially different change in GPA from the others. 

Hispanics showed a substantially larger increase in mean GPA than the other 

groups and a slightly greater increase in the percentage of GPAs of 3.0 or more 

(Table 4.1). The Asian samples showed substantial but partially offsetting 

changes: a decrease in grades of B but an increase in B- and B+. The very small 

sample of Asians in HSB, as well as the substantial changes in the Asian 

population caused by immigration, make these patterns questionable. 

Changes in grading showed no substantial differences between males and 

females. There were some slight differences—for example, the decrease in GPAs 

of C+ was slightly larger among males—but both genders experienced a small 

decrease in the frequency of all GPAs below a B- and a small increase in all 

higher GPAs. 

GPAs increased slightly more for students with well-educated mothers. The 

academic GPAs of students whose mothers had a high school education or less 

showed almost no change, whereas the GPAs of those whose mothers had some 

college or more education increased by a larger but still small amount (Table 4.2). 

The greater increase in GPA among higher-educated families occurred despite 

the fact that this group became less selective. Students with mothers with at least 

some college education increased from 29 to 35 percent of the sample from 1982 

to 1992, and those whose mothers had at least a college degree increased from 15 

to 26 percent of the sample.1 The small mean increase in the academic GPA of 

Table 4.1 

Change in Academic GPA by Race/Ethnicity, 
1982 to 1992 

Percentage 
withB or 

Mean Grade Greater 

All 0.074 3.1 
Asian 0.037 3.0 
African American 0.050 1.8 
Hispanic 
White 

0.170 
0.056 

4.9 
2.5 

■^The changing distribution of mother's education accounts for the fact that the increase in GPA 
among all students is close to the highest value for any of the subgroups in Table 4.2. 
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Table 4.2 

Change in Academic GPA by Mother's 
Education, 1982 to 1992 

All 0.074 
Less than high school -0.020 
High school graduate -0.004 
Some college 0.081 
College degree or more 0.073 

students whose mothers had at least a college degree stemmed largely from a 

sizable increase in GPAs of A- and A (Figure 4.2). 

Self-reported track had a slight relationship to the increase in mean GPA. The 

mean GPA of students' reporting themselves in the academic track was 

essentially constant, increasing only 0.01, whereas the GPA of other students 

increased by about 0.04. 

More substantial differences in grading changes appeared across income 

categories. The four lower income categories all showed small changes in 

average GPA. Categories 1,3, and 4 showed increases similar to the overall 

increase, but category 2 actually showed a small decrease in mean grades (Table 

4.3). In contrast, the mean increase in the highest income category, although still 

smaller than a fractional grade point (e.g., from B- to B), was nearly three times 

as large as the overall mean increase. This mean increase reflected sizable 

C-       C      C+      B-       B 

Grade point average 

1982 HSB 1992 NELS 

Figure 4.2—Distributions of Academic GPA Among Students Whose Mothers Have 
at Least a College Degree, 1982 HSB and 1992 NELS 
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Table 4.3 

Change in Academic GFA by Income 
Category, 1982 to 1992 

Percentage 
with Bor 

Mean Grade Greater 
All                         0.074 3.1 
1                             0.062 1.7 
2                           -O.061 -3.9 
3                             0.077 0.1 
4                             0.055 1.3 
5                             0.211 13.0 

increases in the percentages of students receiving GPAs of B+, A-, or A (Figure 

4.3). In all income categories other than the highest, the change in the percentage 

of GPAs of 3.0 or greater was modest, whereas in the highest income category, 

the increase was 13 percentage points (Table 4.3), from 48 to 61 percent of all 

students in the category. This increase occurred even though the top income 

category became less selective during the decade, increasing from 10.5 percent to 

14.4 percent of the weighted sample. 

The change in academic GPA from 1982 to 1992 varied substantially depending 

on the location of schools. The mean academic GPAs of students in rural and 

C+        B- B 

Grade point average 

A+ 

1982 HSB 1992 NELS 

Figure 4.3—Distributions of Academic GPA in Highest Income Category, 
1982 HSB and 1992 NELS 
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suburban schools increased by only about 0.04, whereas the mean GPA of 

students in urban schools increased by 0.22 (Table 4.4). This mean change 

reflects a sizable increase in the percentages of students with GPAs of B, B+, 

or A-. 

Although simple changes in mean GPA do not necessarily correspond to grade 

inflation, these variations across types of students and schools might help explain 

the seeming inconsistency between the small aggregate change in mean academic 

GPA between 1982 and 1992 and the widespread perception of serious grade 

inflation. That is, some observers may have been more swayed by groups that 

had atypically large changes in GPA, such as students from urban schools or 

from high-income families. 

Table 4.4 

Change in Academic GPA by School Location, 
1982 HSB to 1992 NELS 

Percentage 
withB or 

Mean Grade Greater 
All 0.074 0.031 
Rural 0.043 0.010 
Suburban 0.035 0.010 
Urban 0.221 0.110 

GPA Changes by Subject 

Overall trends in grades could mask substantially different trends across subject 

areas. Because some of our analyses were necessarily restricted to 

mathematics—the only subject in which we had linked test scores for HSB and 

NELS—it was particularly important to examine simple changes in mathematics 

grades. We also explored trends in English and science grades. 

Mathematics 

Changes in academic mathematics GPA were in broad stroke similar to those for 

total academic GPA, although they did differ in some details. 

The overall increase in mathematics GPA was even smaller than the increase in 

total academic GPA, but the change was inconsistent across the range of grades 

(Figure 4.4). Mean mathematics GPA remained roughly a C+ and increased only 

by about 0.04 from 1982 to 1992. Both males and females showed only a small 

gain in mathematics GPA, but that for males was slightly larger: 0.07 for males 
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Figure 4.4—Distributions of Academic Mathematics GPA, 1982 HSB and 1992 NELS 

and 0.04 for females. The change in mean mathematics GPA varied only 

modestly among racial/ethnic groups, ranging from a decline of 0.03 among 

Asians to an increase of 0.1 among Hispanics. The modest differences in grading 

changes across levels of mother's education appeared with mathematics GPA as 

well. 

The sizable variation in academic GPA trends among income groups was echoed 

in mathematics GPA. Indeed, the differences were slightly larger in the case of 

mathematics (Table 4.5). The two lowest income categories showed decreases in 

mathematics GPA (-0.03 and -0.14, respectively), whereas the highest income 

category showed an increase of 0.26. The large differences in total GPA change 

among locales, however, was greatly attenuated in the case of mathematics GPA. 

Table 4.5 

Change in Academic Mathematics 
GPA by Income Category 

Mean Grade 
All 0.041 
1 -0.032 
2 -0.135 
3 0.064 
4 0.050 
5 0.262 
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Rural and suburban schools showed essentially no change in mathematics GPA, 

and urban schools showed an average increase of only 0.06. 

English 

Overall, grades in academic English courses also increased only slightly, albeit a 

very small amount more than mathematics grades. The mean grade increased by 

about 0.06. As one can see from Figure 4.5, this very small increase stemmed 

from increases in the percentages of grades in the C+ through A- range. 

In English, as in mathematics, the increase in mean grades was much larger in 

the highest income group than in the others (Table 4.6). The increase in grades 

was small in all racial/ethnic groups but was larger among Hispanics than 

among others (Table 4.7). 

Science 

The distribution of academic science grades differed substantially between HSB 

and NELS (Figure 4.6), but the net effect of these changes was very small. The 

mean grade increased by only 0.04. In science, as in other subjects, the increase in 

grades was substantially larger in the top income category than in others. It was 

also somewhat larger among Hispanics and Asians than among other students 

(Table 4.8). 

C      C+      B-       B 

Grade point average 

CZZ11982 HSB 1992 NELS 

A+ 

Figure 4.5—Distributions of Academic English GPA, 1982 HSB and 1992 NELS 
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Table 4.6 

Change in Academic English 
GPA by Income Category 

Mean Grade 
All 0.063 
1 0.068 
2 -0.097 
3 0.052 
4 0.043 
5 0.224 

Table 4.7 

Change 
GPA 

in Academic English 
by Race/Ethnicity 

Mean Grade 
All 0.063 
Asian 0.069 
African American 0.035 
Hispanic 
White 

0.147 
0.041 

C-      C      C+      B-       B 

Grade point average 

1 1982 HSB 1992 NELS 

Figure 4.6—Distributions of Academic Science GPA, 1982 HSB and 1992 NELS 
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Table 4.8 

Change in Academic Science 
GPA by Race/Ethnicity 

Mean Grade 
All 0.039 
Asian 0.112 
African American 0.017 
Hispanic 0.180 
White 0.007 
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5. Have Grades Become Inflated? 
Mathematics Grades in the Context 
of Tested Proficiency and Coursework 

Although the tabulations described above portray changes in grading, they do 

not show changes in grading standards. To examine trends in grading standards, 

it is necessary to take into account both changes in the coursework students took 

and changes in their proficiency. NELS and HSB do not include enough 

information to control fully for changes in proficiency and coursework, but they 

do permit an estimate of these effects in mathematics. This section describes our 

estimates of changes in mathematics grades, adjusting for trends in coursework 

and tested proficiency in mathematics. 

The section begins by describing two distinct analytical questions that are 

subsumed under "grade inflation" or, more generally, changes in grading 

standards. This is followed by descriptions of changes in tested proficiency and 

course-taking and of the relationships between grades and level of courses. The 

final subsections present estimated changes in grades with no controls, with 

controls for changes in tested proficiency, and with controls for changes in both 

tested proficiency and course-taking. 

The results of these analyses suggest that in mathematics, grades were modestly 

deflated between 1982 and 1992. The small increases in raw grades described in 

the previous section were more than offset by increases in tested proficiency. 

Two Notions of Changing Standards 

Changes in grading standards could be of two types. Commonly, the term 

"grade inflation" is used to refer to an increase in mean grades for students with 

a given level of proficiency in the graded material. The notion is that a given 

grade signals less of value—less achievement—than it did previously. This 

notion implies only a shift upward in grades over time but not a change in the 

relationship between proficiency and grades with cohorts (e.g., Figure 5.1). We 

call this "mean shift" score inflation. 
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"Changing standards" might also refer to changes in the relationship between 

proficiency and grades within cohorts. That is, over time, grading may become 

either more or less strongly related to differences in actual student proficiency. 

In this case, grade inflation would entail a decrease in the relationship between 

proficiency and grades, such that grading gave less sanction to weak performers 

and less reward to high performers. This type of inflation, which we call 

"decreased correlation" inflation, entails a change in the slope of the regression 

of grades on proficiency (e.g., Figure 5.2). 

In practice, changes in grading standards could entail both mean shifts and 

changes in correlation. After describing changes in proficiency, changes in 

coursework, and the relationships between coursework and grades, we analyze 

both mean shifts and changing correlations in grading standards. 

Changes in Tested Proficiency 

It is well known that tested proficiency in mathematics has gradually improved 

in recent decades. On the NAEP long-term trend assessment, the mean increase 
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Figure 5.2—"Decreased Correlation" Grade Inflation 

in mathematics during the 10 years between HSB and NELS was modest, and it 

occurred primarily between 1990 and 1992 (Campbell, Hombo, and Mazzeo, 

2000). In the sample used in this analysis, the mean increase in linked 

mathematics scores between HSB and NELS was about 0.34 standard deviation. 

Thus, to the extent that the HSB and NELS tests measure the same skills that 

should be tapped in assigning student grades, one would expect that if grading 

standards and all else had stayed constant, mean mathematics grades would 

have increased by a commensurate amount—much more than the very small 

increases in grades described above. However, the content of these tests does not 

fully overlap with the content of high school courses. Thus, controlling for these 

test scores does not fully control for relevant aspects of proficiency in 

mathematics—an important limitation that is discussed further below. 

Course-Taking and Its Relationships to Grades 

Although students aiming for admission to selective colleges have typically taken 

primarily college-track courses throughout their careers, many other students 

have not. Over the past two decades, there has been strong pressure to increase 
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the number of academic-track courses taken by all students, and many states 

have stiffened their course-taking requirements for high school graduation. 

Changes in course-taking, such as an increase in participation in college-track 

courses, could change the distribution of grades in many ways and could distort 

inferences about trends in grading standards. If grading standards differ among 

types of classes, a change in the mix of mathematics courses taken could alter 

mathematics GPA even if actual performance did not change. A change in the 

selectivity of students taking courses—for example, an influx into advanced 

courses of lower-performing students whose counterparts in earlier cohorts 

would not have taken them—could lead teachers to change grading standards 

within courses. Both changes in the mix of courses taken by students and an 

overall increase in the number of mathematics courses taken could contribute to 

such a change in selectivity. Changes such as these would alter the relationship 

between performance and grades, making it more difficult to ascertain from 

simple changes in GPA whether grading standards changed. 

The NELS and HSB data do not permit a thorough investigation of these 

questions, but we were able to explore them in several ways for mathematics. 

We examined changes in course-taking from 1982 to 1992 and investigated 

differences in grading standards between the courses that saw large increases 

and other courses. 

Changes in Mathematics Course-Taking from 1982 to 1992 

Consistent with the reform efforts of the 1980s, the decade saw a sharp increase 

in the number of mathematics courses taken by the average student. In 1982, the 

average number of mathematics courses completed per student in our sample 

was 3.2. Ten years later, that number had increased by more than 80 percent, to 

more than 5.8 courses. At the same time, there was a modest increase in 

participation in courses from the traditional college-bound track, such as 

geometry and algebra 2. The proportion of grades from general courses 

decreased, whereas the proportion from geometry and especially algebra 2 

increased (Figure 5.3). 

The modest change in the proportion of courses from each area, however, does 

not take into account the large increase in mathematics course-taking over the 

same period. The combined effect of the increase in mathematics course-taking 

and the shift into college-track classes is shown by trends in the number of course 

grades per student. The number of general course grades per student dropped 

slightly, while the number of grades in all categories of courses at the level of 

algebra 1 or higher increased (Figure 5.4). The increases were particularly large 
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in algebra 1 (80 percent), geometry (112 percent), algebra 2 (146 percent), and 

advanced (114 percent). Recall that unified mathematics may include content 

from any of the other categories. 

Changes in Grades in Specific Mathematics Courses 

The small changes in mathematics grades described above occurred primarily in 

high-level classes: geometry, algebra 2, advanced, and unified. The change was 

most marked in advanced classes, in which the share of students receiving a 

grade of 3.0 or higher increased by 10 percent, and the share receiving a grade of 

A- or higher increased by more than 7 percent (Figure 5.5). Of the courses that 

showed very large increases in participation, only algebra 1 showed no consistent 

increase in the percentage of high grades. Pre-algebra, which had a smaller 

increase in participation, showed a small decrease in grades. 

B B+ A- 

Grade 

A+ 

■ General 0 Consumer H Occupational 

^ Pre-algebra D Algebra 1 ^ Geometry 

Q Algebra 2 D Advanced M Unified 

Figure 5.5—Change in Percentage of Grades at or Above Each Level 
by Type of Course, 1982 HSB and 1992 NELS 
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The Relationships Between Course Level and Grades 

The shift into higher-level mathematics courses, in conjunction with the large 
increase in mathematics coursework, could affect the grade distribution in 
several ways and could distort inferences about changes in grading standards. 
For example, if grading standards and the level of difficulty of courses were 
maintained, the movement of students into more difficult courses might be 
expected to depress mean grades. If grading standard were maintained but were 

harsher in the more advanced courses, this trend would be exacerbated. If, on 
the other hand, grading standards were more lenient in more advanced 
courses—for example, if teachers believed that an advanced class with the 
highest-achieving students should have a high mean grade despite the difficulty 
of the material—any downward trend in grades caused by the movement of 
students into more advanced courses would be attenuated or perhaps even 
reversed. And, of course, grading standards may have changed within levels of 
coursework, either because of a secular trend in grading standards or as a 
reaction to the influx of lower-achieving students into difficult courses. 

In both cohorts, grades were on average higher in more advanced mathematics 
courses, underscoring the potential confounding between changes in coursework 
and grades. In both cohorts, the distribution of course grades was nearly 
identical across the four lowest course categories, through algebra 1 (Figure 5.6). 
However, geometry, algebra 2-precalculus, and advanced (which included non- 
AP calculus, AP mathematics courses, and other advanced courses) had 
progressively higher distributions of grades in both cohorts. These distributions 
count each course grade as an observation, and the middle line of each bar 
represents the median across all grades. A similar if less striking pattern appears 
in the average grades of individual students. Table 5.1 shows four mathematics 
grade point averages: the total GPA across all academic courses, the average 
across all algebra 1 grades, the average of algebra 2 grades, and the average 
across all advanced courses. In both cohorts, the mean of the advanced grades is 
considerably higher than the other averages. In HSB, the mean for algebra 2 was 
slightly higher than those for lower-level courses, although this difference had 
nearly vanished in NELS. 

These simple comparisons, however, confound two things: differences in 
grading across courses and differences in the subsamples of students who 
contributed grades for each class. For example, in NELS, the number of students 



34 

CO 

15    1 

* 

NELS 

ItIP P LJ 

HSB 

i —-1 

^ 
■^ 

.** 
*& *& y <? V 

Classification 

^ 

4 

t 3 

2 

1 

Figure 5.6—Distribution of Math Course Grades by SST Course Classification 

contributing algebra 1 grades was nearly four times as large as the presumably 

much more selective group with grades from advanced courses. To disentangle 

these two factors, we created two subgroups that were homogeneous in terms of 

course-taking and explored differences in mean grades across courses within 

each of these groups. Within each of these subgroups, comparisons across 

courses were stripped of differences in selectivity that confound simple 

comparisons across courses. The larger group contained all students who had 

valid grades for both algebra 1 and algebra 2 but no grade for an advanced 

mathematics course. The second and much smaller group included students 

who had grades for algebra 1, algebra 2, and at least one advanced mathematics 

course. 

When comparisons across courses are restricted in this way to consistent 

subgroups of students, the tendency for grades to be higher in more advanced 

courses is reversed. Within each of these subgroups, there was a clear tendency 

for grades in more advanced courses to be lower than the grades in lower-level 
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Table 5.1 

Mean Math GPAs, Overall and for 
Advanced Courses 

Na Mean 
1982 HSB 
Total academic GPA 12,324 2.20 
Algebra 1 GPA 7,906 2.24 
Algebra 2 GPA 5,596 2.38 
Advanced math GPA 1,332 2.70 
1992 NELS 
Total academic GPA 11,522 2.23 
Algebra 1 GPA 8,104 2.21 
Algebra 2 GPA 7,765 2.28 
Advanced math GPA 2,113 2.70 

aThe number of students contributing grades to 
each mean. 

classes (Tables 5.2 and 5.3). This seems reasonable, given the more difficult 

material in advanced classes, and does not suggest any confounding tendency 

toward more lenient grading in more advanced classes. 

These consistent subgroups did show a clear change in grades, however, that is 

not an indication of inflation. In both cases, average mathematics GPAs for these 

groups dropped between 1982 and 1992. In the case of students who took 

algebra but not advanced mathematics, mean GPA dropped about 0.2 overall 

and by a similar amount in algebra 1 and algebra 2 (Table 5.2). The decrease in 

grades was larger for the much smaller subsample of students who took 

advanced courses; algebra 2 grades for these students dropped by nearly 0.4 

(Table 5.3). These decreases could reflect a decline in the selectivity of upper- 

level courses accompanying the sizable increase in the proportion of students 

taking these courses. 

Table 5.2 

Mean Math GPAs of Students Who Took Algebra 
but Not Advanced Math 

Difference, 
N Mean NEL-HSB 

1982 HSB 
Total academic GPA 3,704 2.47 
Algebra 1 GPA 3,704 2.65 
Algebra 2 GPA 3,704 2.25 
1992 NELS 
Total academic GPA 4,988 2.28 -0.19 
Algebra 1 GPA 4,988 2.44 -0.21 
Algebra 2 GPA 4,988 2.06 -0.19 



36 

Table 5.3 

Mean Math GPAs of Students Who Took Algebra 
and Advanced Math 

Difference, 
N Mean NEL-HSB 

1982 HSB 
Total academic GPA 552 2.98 
Algebra 1 GPA 552 3.16 
Algebra 2 GPA 552 2.93 
Advanced math GPA 552 2.83 
1992 NELS 
Total academic GPA 841 2.66 -0.32 
Algebra 1 GPA 841 2.83 -0.33 
Algebra 2 GPA 841 2.56 -0.37 
Advanced math GPA 841 2.59 -0.24 

Estimates of Grading Changes Independent of Scores 
and Coursework 

The correlation of grades with tested proficiency was estimated by comparing 

the slopes of the regression of academic mathematics GPA on our linked test 

scores, after adjusting for differences in the reliability of the HSB and NELS tests, 

as described in Appendix E. 

Mean shifts in grades were estimated with a series of models. The first stage 

simply reesrimated raw differences in grades, holding neither scores nor 

coursework constant. This provides the same information as is shown in the 

descriptive analyses above but provides an estimate that is internally consistent 

with subsequent models. The second stage added controls for test scores, and 

the third added controls for coursework as well. We did not estimate models 

that included coursework but not scores. We used hierarchical linear models 

rather than simple regressions to take into account the clustered sampling used 

in HSB and NELS. These models are described in Appendix D. 

Although mean shifts are the more common notion of grade inflation, we present 

the analysis of correlations first in this section because the results of that analysis 

influenced the analysis of mean shifts. 

The models employed for this analysis are simplifications and have substantial 

weaknesses that could not be avoided given the limitations of the HSB and NELS 

data. One weakness is the nature of the tests used. Ideally, one would want to 

adjust each course grade for proficiency in the specific material that should enter 

into that grade. For example, one would want to know how geometry grades 

had changed after controlling for proficiency in geometry. The survey 
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assessments used in NELS and HSB have insufficient coverage of specific course- 
level domains and necessarily include material irrelevant to any specific course. 
It is likely, however, that if appropriate tests were available, they would correlate 

highly with the NELS and HSB tests. 

A second weakness is that course labels are at best a very rough indicator of the 
actual content and level of demand of courses. The fact that two courses were 
labeled "algebra 1," for example, does not necessarily mean that they covered 
similar ranges of material or that they covered any given material at similar 
levels of depth and complexity. In addition, as the percentage of students taking 
certain courses changed, the mix of those courses may also have changed. For 
example, if more lower-performing students start taking a course with a given 
title, one result might be more classes at a relatively easy level. Thus, our 
controls for changes in coursework are only approximate. 

Correlation of Grades with Tested Proficiency 

There is no evidence of decreased-correlation grade inflation between the 1982 
HSB and the 1992 NELS. Indeed, the correlation between tested proficiency and 
academic mathematics GPA (disattenuated for unreliability in 0) increased from 
0.47 in HSB to 0.58 in NELS. It is important to note that this difference in 
correlations may have been influenced by differences between the HSB and 
NELS tests that were not addressed by linking. For example, the NELS tests, 
being adaptive and therefore longer in the aggregate, might have included more 
content that is directly pertinent to course grades, which could have increased 
the correlation. However, given the appreciable observed increase in the 
correlation, it seems unlikely that the use of stronger and identical tests would 
have reversed the finding and produced an appreciable decrease in the 
relationship. 

Raw Shift in Grades 

The first-stage model estimated a trivial increase in mean grades. The estimated 
mean increase in academic mathematics GPA was 0.02 on the 0-4.3 scale, half the 
size of the very small change noted in the descriptive analysis presented above. 

Changes in Grades Holding Scores Constant 

Because the slope of the regression of mathematics grades on test scores changed 
between the two cohorts, the model that includes test scores as a predictor of 
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grades is necessarily interactive. That is, there is no single estimate of the mean 

change; the mean change varies depending on the level of tested proficiency. 

Our model shows grade deflation in mathematics that was larger for students 

with lower test scores. For most of the range of test scores (specifically, until 

nearly a full standard deviation above the mean), students with a given test score 

had lower mean grades in NELS than in HSB (Figure 5.7). This difference was 

appreciable for students who scored below the grand mean on the tests. For 

students at the mean score (centered 9 = 0), the average academic mathematics 

grade was estimated to be 0.16 lower in NELS than in HSB. For students scoring 

a standard deviation below the mean test score, the difference in average grades 

was 0.35. Adjusted grades were equal in the two cohorts for students with scores 

roughly 0.9 standard deviations above the mean and were higher in NELS for 

students with scores above that. Note that the difference in slopes between HSB 

and NELS is slightly exaggerated by differences in reliability. That does not 

affect the finding of grade deflation, although it presumably slightly biases 

upward the estimate of that effect for low-scoring students. 

3.0 
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Figure 5.7—Grades as a Function of Test Scores, 1982 HSB and 1992 NELS 
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Changes in Grades Holding Scores and Coursework Constant 

Adding controls for changes in the mix of coursework did not alter the finding 

that mathematics grades were deflated for many students. The estimated 

amount of deflation was slightly smaller when coursework was taken into 

account: 0.14 GPA points at the mean score (Figure 5.8). Controlling for 

coursework also reduced slightly the difference between HSB and NELS in the 

slope of the relationship between test scores and grades. As a result, the 

estimated amount of deflation shrank a bit more (to 0.28) for students one 

standard deviation below the mean than for students at the mean. Similarly, the 

point at which estimated deflation was zero increased slightly, to about one 

standard deviation above the mean. 
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Figure 5.8—Grades as a Function of Test Scores Holding Coursework 
Constant, 1982 HSB and 1992 NELS 
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6. A Detailed Look at Predictors of Grades 
in 1982 and 1992 

To understand the influences on grades more fully, we analyzed the 

relationships between academic mathematics GPA and a variety of student and 

school characteristics. Identical analyses were carried out in the 1982 and 1992 

cohorts. These analyses were two-level hierarchical linear models, with students 

as level 1 observations and schools as level 2. Additional details of these models 

can be found in Appendix D. 

These analyses were carried out in several stages. The first stage included 11 

student-level variables: mathematics score (0, grand mean centered within 

cohort), gender, mother's education, four variables indicating the proportion of 

the student's mathematics grades that came from each of the four categories 

described previously, and dummy variables for low income, African American, 

Hispanic, and college-preparatory-track flag. This first-stage model initially 

included 13 level-2 variables: the school means of each of the 11 student-level 

variables and flags for rural and urban school location. The location flags were 

deleted, however, because of a lack of predictive power, so all school-level 

variables in the analyses reported here are simply the school means of student- 

level variables. 

At this first stage, the relationships between the student-level variables and GPA 

were held constant across schools. The models were designed to indicate the 

extent of context effects—that is, the predictive power of school-level variables 

after controlling for student-level characteristics. For example, a zero coefficient 

for schools' proportion African American enrollment would not indicate that this 

proportion fails to predict mean GPA; rather, it would mean that the proportion 

African American enrollment adds no information beyond that provided by the 

race and ethnicity of the individual students in the schools.1 

Because the relationships between scores and grades might vary as a function of 

student or school characteristics, the second and third stages of analysis entered 

interactions with scores. The second stage added interactions between students' 

scores and some other student-level variables, such as the interaction between 

■'Specifically, the analysis at stage 1 used fixed-coefficient models and did not center student- 
level variables around the school means. See Appendix D. 
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gender and test scores as predictors of GPA. The third stage allowed certain 

student-level relationships to vary across schools as a function of school 

characteristics; that is, they added selected cross-level interactions with scores, 

such as the interaction between students' scores and the percentage of the 

school's students who self-identified as African American. Some terms that did 

not significantly predict GPA were removed. 

The models described here all included mathematics test scores and thus 

estimate the relationships between other factors and grades after controlling for 

tested proficiency in mathematics. However, as noted above, these tests are only 

limited proxies for the ideal assessments that would measure the proficiencies 

relevant to the mathematics grades students received. For this reason, caution is 

needed in interpreting the results of these models. For example, all of the 

analyses show that holding constant all else in the models, female students 

received substantially higher mathematics grades than did males. This does not 

necessarily indicate that teachers applied more lenient grading standards to 

female students. It is possible that female students on average performed better 

on aspects of mathematics that were not tested in these assessments but were 

relevant to their grades. Research has also shown that many teachers consider 

factors other than proficiency, such as effort and behavior, in assigning grades, 

and it is possible that female students on average perform better in terms of these 

factors. It is also plausible, however, that differences in grading standards 

contributed to the relationships estimated in these models. For example, 

differences in leniency could have contributed to the relationship between 

gender and grades, and it is entirely plausible that differences in grading 

standards among schools of different types contributed to some of the 

relationships between school characteristics and mean grades. 

Although some differences between the findings for the 1982 and 1992 cohorts 

did appear, the results of the models were generally similar, indicating that the 

determinants of grades had not changed markedly during the decade between 

the cohorts. Therefore, to simplify presentation, we focus primarily on results 

from HSB and then point out some differences that emerged when identical 

models were run in NELS. 

Influences on Grades in 1982 HSB 

All of the models showed that scores on the HSB and NELS mathematics tests 

were moderately strong predictors of grades. In the case of HSB 1982—which 

showed a weaker relationship between scores and grades than did NELS 1992— 

each standard deviation increase in test scores predicted an increase of 0.42 in 
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GPA, on a 0-4.3 scale (Table 6.1). Note that this estimate, which controls for 

differences on the other variables in this model, is approximately equal to the 

raw relationship between scores and grades. 

The simplest model, from the first stage described above, shows that after test 

scores are controlled, a number of student- and school-level variables have 

substantial relationships with academic mathematics GPA. As noted, female 

students had mean grades exceeding those of males by 0.3 on a 0-4.3 scale (Table 

6.1). Both low-income students and students in the college-preparatory track 

received slightly higher average grades, but these differences, although 

statistically significant, were very small. The mean grades of Hispanic and 

African American students were slightly lower than those of other students, but 

the first of these differences was not significant. (Note that in these models, 

Table 6.1 

Two-Level (Fixed Coefficients) Model of Academic 
Mathematics GPA, 1982 HSB 

Variable Estimate t P 
Student-level variables 
Intercept 2.10 23.8 <0.0001 
Female 0.30 16.0 <0.0001 
Mother's education -0.01 -1.9 0.0604 
Low income 0.07 2.8 0.0054 
Hispanic -0.05 -1.6 0.1038 
African American -0.08 -2.1 0.0333 
Mathö 0.42 30.1 <0.0001 
College prep 0.08 3.5 0.0004 
Proportion advanced 0.47 3.9 <0.0001 
Proportion algebra 1 -0.45 -11.4 <0.0001 
Proportion algebra 2 0.32 5.6 <0.0001 
Proportion geometry -0.31 -5.4 <0.0001 

School-level variables 
School proportion female -0.13 -1.7 0.0954 
School mean mother's education 0.00 0.2 0.8644 
School proportion low income 0.25 3.2 0.0016 
School proportion Hispanic -0.17 -2.0 0.0465 
School proportion African American -0.39 -4.5 <0.0001 
School mean math 6 -0.18 -4.0 <0.0001 
School proportion college prep -0.20 -2.6 0.0099 
School proportion advanced -0.32 -1.0 0.3152 
School proportion algebra 1 0.55 4.8 <0.0001 
School proportion algebra 2 0.28 1.9 0.0603 
School proportion geometry 0.30 1.8 0.0766 
Residual variances 
T (between-school) 0.08 11.1 <0.0001 

(j2 (wi thin-school) 5.09 56.3 <0.0001 
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Hispanic and African American students are compared only to non-Hispanic 

whites.) 

The mix of mathematics courses students took had a strong effect on math GPA, 

but these effects are hard to interpret. Recall that these variables indicate the 

proportion of grades derived from courses in each category, with courses fitting 

into none of the categories (41 percent of grades in HSB and 27 percent in NELS) 

as the omitted group. The larger the proportion of grades from geometry or 

algebra 1, the lower the mathematics GPA; the larger the proportion from algebra 

2 or advanced classes, the higher the mathematics GPA (Table 6.1). These 

differences could reflect a mix of selection effects (i.e., differences among the 

students who enroll in different classes), grading standards, and the correlations 

between scores on the HSB test and proficiency with the material upon which 

grades are based on each type of course. 

A number of school characteristics showed substantial relationships to mean 

GPA, even after taking student characteristics into account. Mean test scores and 

the proportion of students in the college-preparatory track both had significant 

negative relationships to mean GPA, which might indicate tougher grading 

standards in high-achieving schools (Table 6.1). However, these effects were 

small. The coefficient for school mean math 6, for example, indicates that an 

increase of a full standard deviation in mean test scores predicts a decrease of 

0.18 in mean GPA, and a school with all students in the college-preparatory 

track, if one were to exist, would have a mean GPA 0.20 lower than a school that 

had no students in that track but was otherwise comparable. Consistent with a 

simpler study of NELS (U.S. Department of Education, 1994), schools with a 

higher proportion of low-income students had higher mean grades, holding all 

else constant, but schools with larger Hispanic or especially large African 

American enrollments had lower mean grades. The proportion African 

American enrollment had a sizable effect; the model predicts that the mean GPA 

in an all-African American school would be 0.39 lower than in a school that had 

no African American enrollment but was otherwise similar. The means of the 

proportion of marks from each category of courses showed sizable relationships 

to mean GPA, but only one of these effects was unambiguously significant. That 

is, the mean proportion of grades from algebra 1 classes showed a strong positive 

relationship with mean GPA, even though at the student level, students' 

proportion of grades from this type of class was negatively related to GPA. 

The second-stage analysis examined student-level interactions between 

mathematics test score and four dummy variables that identified students as 

female, low-income, African American, or Hispanic. This showed that there was 
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no interaction with the African American variable—i.e., the student-level 

relationship between scores and GPA was essentially the same for African 

Americans and students who were neither African American nor Hispanic (Table 

6.2). There were small interactions with the other three variables, however. The 

relationship between scores and GPA was slightly stronger for females than for 

males and slightly weaker for both Hispanics and low-income students. In the 

language used in the previous section, at the student level, GPA was somewhat 

more sensitive to tested proficiency for female students and somewhat less 

sensitive for Hispanic and low-income students. 

To start the third stage of the analysis, we allowed the student-level relationship 

between scores and GPA to vary rather than constraining it to be constant across 

schools. This variance component was statistically significant, so we attempted 

to predict the variation among schools using three characteristics of schools: the 

proportions of students who were African American, Hispanic, or low income. 

The only cross-level interaction that was statistically significant was the 

interaction between mathematics 6 and the proportion of students who are low 

income (Table 6.3). This interaction showed that the student-level relationship 

between scores and GPA was stronger in schools that had a larger proportion of 

low-income students. This finding was only marginally significant, however, 

and it was not replicated in NELS (see below), so it may not warrant 

interpretation. 

Table 6.2 

Student-Level Interactions in Prediction of Academic 
Mathematics GPA, 1982 HSB 

Student-Level Interaction Estimate t P 
Female x math 6 0.06 0.01921 0.002 
African American x math 9 -0.01 0.03547 0.71 
Hispanic x math 6 -0.08 0.0315 0.009 
Low income x math 6 -0.10 0.02438 <0.0001 

Table 6.3 

Cross-Level Interactions in Prediction of Academic 
Mathematics GPA, 1982 HSB 

Cross-Level Interaction Estimate t p 
School proportion low income x math 6                      0.14 2.0 0.047 
School proportion African American x math 0           -0.09 -1.4 0.165 
School proportion Hispanic x math 0 -0.08 -1.1 0.267 
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Influences on Grades in 1992 NELS 

The simple two-level model in NELS showed the same general patterns as the 

comparable model in HSB, but the size of some estimates differed. The 

discussion here focuses on the differences. In the following tables, a column 

showing the differences in estimates between the two cohorts has been added, 

and variables for which estimates changed appreciably and significant are in 

shaded rows. 

Several of the estimates of student-level relationships changed appreciably 

between 1982 and 1992. As noted above, the relationship between test scores and 

mathematics GPA became stronger (Table 6.4)—by 0.10, when holding all else in 

Table 6.4 

Two-Level (Fixed Coefficients) Model of Academic Mathematics 
GPA, 1992 NELS 

Difference, 
Variable Estimate t P NELS-HSB 

Student-level variables 
Intercept 2.03 27.4 <0.0001 -0.07 
Female 0.21 12.9 <0.0001 -0.08 
Mother's education 0.01 1.3 0.1863 0.02 
Low income 0.04 2.0 0.0488 -0.02 
Hispanic -0.07 -1.7 0.089 -0.02 
African American -0.09 -2.6 0.0096 -0.01 
Mathe 0.52 32.8 <0.0001 0.10 
College prep 0.13 6.7 <0.0001 0.05 
Proportion advanced 0.64 6.0 <0.0001 0.16 
Proportion algebra 1 -0.70 -12.6 <0.0001 -0.25   : 
Proportion algebra 2 0.30 5.4 <0.0001 -0.02 
Proportion geometry -0.57 -8.9 <o.opoi -0.25    ; 

School-level variables 
School proportion female -0.11 -2.1 0.0398 0.02 
School mean mother's education 0.04 2.2 0.0279 0.03 
School proportion low income 0.19 2.8 0.0048 -0.06 
School proportion Hispanic -0.11 -1.5 0.1242 0.06 
School proportion African American -0.27 -4.1 <0.0001 0.11 
School mean math 6 -0.14 -3.5 0.0005 0.03 
School proportion college prep -0.16 -3.0 0.0032 0.03 
School proportion advanced -0.45 -1.5 0.1449 -0.13 
School proportion algebra 1 0.54 3.9 0.0001 -0.02 
School proportion algebra 2 0.39 2.9 0.0042 0.11 
School proportion geometry 0.33 2.0 0.047 0.03 
Residual variances 
T (between-school) 0.10 14.1 <0.0001 0.02 
o"2 (within-school) 3.20 54.3 <0.0001 -1.88 



46 

the model constant. Both the positive association between GPA and the 

proportion of grades from advanced courses and the negative associations 

between GPA and the proportion of grades from algebra 1 and geometry became 

substantially stronger. The cause of this change is not clear. The gender 

difference in grades shrank somewhat. 

Two changes in school-level relationships stand out. First, the association 

between high proportions of African American students and lower mean GPA 

became substantially weaker between 1982 and 1992 (Table 6.4). Second, the 

positive relationship between mean GPA and the mean proportion of grades 

from algebra 2 classes became stronger. 

Student-level interactions between test scores and gender, race/ethnicity, and 

income remained small in NELS, and none was highly significant (Table 6.5). 

The one substantial cross-level interaction that appeared in HSB, test scores by 

school proportion low income, vanished in NELS (Table 6.6). 

Table 6.5 

Student-Level Interactions in Prediction of Academic Mathematics 
GPA, 1992 NELS 

Difference, 
Student-Level Interaction Estimate t P NELS-HSB 
Female x math 6 0.08 3.9 <0.0001 0.02 
African American x math 6 -0.05 -1.5 0.1442 -0.04 
Hispanic x math 6 -0.02 -0.6 0.5851 0.06 
Low income x math 6 -fl.06 -2.3 0.0207 0.04 

Table 6.6 

Cross-Level Interactions in Prediction of Academic Mathematics GPA, 1992 NELS 

Difference, 
Cross-Level Interaction Estimate      t p       NELS-HSB 
School proportion low income x math 6 -0.02      -0.3    0.7892        -0.16 
School proportion African American x math 9 -0.12      -2.1     0.0398        -0.03 
School proportion Hispanic x math 6 -0.03      -0.4    0.6895 0.05 



47 

7. Discussion 

Taken together, the results presented here are largely inconsistent with anecdotal 
reports of serious grade inflation in high school. We distinguished between two 
types of grade inflation: a mean shift, in which the average grades of students at 
a given level of proficiency increase, and decreased correlation, in which the 
relationship between grades and tested proficiency weakens. Neither type of 
grade inflation was apparent in our analyses. 

Descriptive analyses showed increases between 1982 and 1992 in both the mean 
overall GPA of high school seniors and in the percentage of grades greater than 
or equal to B, but in most instances, these increases were very small. More 
detailed analysis of academic mathematics grades casts further doubt on the 
existence of large-scale grade inflation. Course grades for subsamples with 
comparable levels of mathematics courses dropped from 1982 to 1992, perhaps 
reflecting a decrease in the selectivity of those courses stemming from the large 
increase in the proportion of students enrolling in them. Tested proficiency in 
mathematics increased substantially during the decade in question, and if this 
increase is taken into account, adjusted grades actually decreased, particularly 
for low-scoring students. Taking into account the sizable increases in 
mathematics coursework in general and in advanced coursework in particular 
only slightly lessened the estimated grade deflation. In mathematics, the 
correlation of GPA with tested proficiency increased from 1982 to 1992. Finally, 
multilevel models of the predictors of grades showed relatively modest changes 
from 1982 to 1992. 

The limitations of these analyses are important and need to be considered in 
interpreting these findings. One important set of limitations stems from the 
achievement tests used. Ideally, an analysis of changes in grading standards 
would control for students' mastery of the material that should count toward 
each grade. In mathematics, for example, the ideal would be to have a test for 
algebra 1, another test for algebra 2, and so on, each linked across two cohorts. 
We did not have access to so much detail about student achievement. Rather, we 
had only the general-purpose survey tests administered with the HSB and NELS 
surveys. Therefore, our controls for student achievement are incomplete, and 
better controls might have yielded substantially different estimates of adjusted 
changes in grading. Moreover, even though the HSB and NELS mathematics 
tests were linked using accepted methods, they are not equivalent. It is possible, 
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for example, that the NELS test, which is adaptive (i.e., it employs different forms 

for students at different levels of proficiency), is a better measure of the material 

relevant to certain course grades than is the HSB test. If this were so, it could 

explain the increased correlation of grades with scores in NELS, and it could also 

have affected our estimates of adjusted changes in grading. 

The available measures of coursework are similarly insufficient. At any one time, 

there can be a great deal of variation in content and difficulty within each of the 

course categories we used, such as "algebra 1" and "geometry." More 

threatening to our analyses is the fact that there could be differences across time 

as well. For example, as the mean number of mathematics courses increased and 

the percentage of students taking relatively advanced courses grew, the typical 

content or difficulty level of a given type of course could have changed in 

response. Thus, our controls for changes in course-taking are also less than ideal. 

Nonetheless, the consistency of our results across different types of analysis 

strongly suggests that there was no large-scale, substantial grade inflation, at 

least in mathematics, between 1982 and 1992. Better measures and models could 

lead to somewhat different estimates, but it seems unlikely that they would lead 

to a dramatically different finding. 

If these conclusions are correct, what accounts for their inconsistency with 

widespread and persuasive accounts of serious grade inflation? There are 

several possible explanations, all of which are only speculative. One is that grade 

inflation has occurred in recent years but happened primarily outside the time 

period considered here—either before or after the cohorts graduating between 

1982 and 1992. This hypothesis is consistent with the findings of Ziomek and 

Svec (1995), who found minor inflation from 1990 through 1992 but more 

substantial inflation later. Analyses now under way at the College Board are also 

consistent with this hypothesis and have found evidence of grade inflation 

occurring after the period we considered.1 A second possibility is that localized 

increases in grades attracted great attention and created an impression of 

changes more pervasive than those that actually occurred. For example, we did 

find a small increase in mean overall GPA and a more sizable increase in 

mathematics GPA among high-income students. Grade inflation in some high- 

income schools might have attracted the attention of both the press and of 

universities that draw disproportionately from schools serving advantaged 

youth. A third possibility is that grading standards in earlier years were not as 

stringent as many people recall them to be and that instances of overly lenient 

■'personal communication from W. Camara, E. Kimmel, and J. Scheuneman, 2000. 



49 

grading are not a new phenomenon. Grades may have been higher than people 
remember, and the work corresponding to a given grade might not have been 
easier than it is now. Indeed, in one of the authors' communities, for example, it 
is common to hear parents commenting that their children are required to do 
much harder work in high school than the parents had to do a generation earlier. 

Possible changes in grading standards remain an important issue, however. This 
possibility is of critical importance to postsecondary institutions, and it is also a 
key concern for K-12 educators in an era in which the enforcement of standards 
is a central focus of education policy. Therefore, further exploration is 
warranted. For example, it is important to explore whether grade inflation 
occurred outside the period covered by this study. Other types of research 
would be an important complement to the type of work presented here. 
Research that uses large-scale surveys and the general-purpose achievement tests 
that are typically achmnistered in them provide a coarse lens. Such research is 
useful for discerning large-scale trends and some of the rudimentary 
relationships that accompany them but is not fully sufficient to explore changes 
in grading standards. Other types of research that sacrifice scale and perhaps 
representativeness for the sake of greater detail may provide a necessary 
complement. For example, some states and districts administer end-of-course 
examinations that would be far stronger than the tests used here as controls for 
student mastery of grade-related content. Similarly, detailed examination of 
students admitted to specific postsecondary institutions might provide evidence 
of changes in the level of preparedness of accepted students with a given level of 
GPA. 
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A. IRT Scaling of Mathematics Test Scores, 
1982 HSB Seniors and 1992 NELS 
Seniors 

by Thomas Sullivan 

Response Matrix 

The first step was to create a matrix of item responses (and corresponding 

answer key) for the test-taking students in each cohort. All students who 

responded to at least one question, had a positive questionnaire weight (F2QWT 

for NELS or FUWT for HSB), and had been administered the test (TESTFLAG = 

1) were used in the scaling regardless of their presence in our final analysis of 

grading standards. IRT calibration was based on a weighted response vector 

where the weights are derived from (1) the test weight (a rescaled test weight for 

NELS that forced strata weight totals to be the same for the questionnaire 

students and the test-taking students), and (2) the follow-up test weight, 

FUTESTWT, for HSB. The rescaled weights used are ki times the original test 

weights (i = 1,2), where kjis a cohort-specific scalar that forces the sum of the 

weights in both cohorts to be the same (and therefore to contribute equally to the 

scaling). 

Groups 

In total, there are 94 unique mathematics items across the two cohorts, i.e., HSB 

and NELS seniors. There are 38 questions in the HSB test, 70 questions in the 

NELS tests, and 14 items common to both (70 + 38 -14 = 94). Different NELS 

tests were administered to three ability groups (low, medium, and high). For 

purposes of the IRT analysis, each of these different test forms defines a test- 

taking "group." 

IRT Item Parameter Estimation 

BILOG-MG was used with marginal maximum likelihood (MML) estimation of 

the item parameters and maximum likelihood estimation of the 8 distribution. 

Separate prior distributions on the 6 vectors were allowed for each of the four 

groups during the item calibration phase but a common set of item parameters 

was estimated for all students regardless of their group. To solve the 
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indeterminacy of the location of the 6 vectors, the first group (HSB) was used as 

reference and that ability vector was rescaled to follow an N(0,1) distribution. 

Beta prior distributions were put on the guessing parameter of each item so that 

the mean was equal to 1/k where k is the number of possible responses. Since 

the mean of a ß prior is a I (a - ß) and the variance is a ß /[(a + ß)2(a + ß + 1)], 

any a can be arbitrarily chosen for a fixed ß to get the desired prior mean. 

However, to control the variance subject to a target mean, the sum of a + ß must 

be carefully chosen. BILOG-MG initially chooses the values so that a + ß - 20, 

and our priors reflected the same approach. The prior means are determined by 

the number of possible responses (3,4, or 5). Prior means and standard 

deviations for the slope assume a lognormal distribution and are set to mean (a) 

= 1, SD(a) = 1.649. 

For the first round of estimates, 25 iterations were run and convergence to the 

default tolerance was not achieved. However, this was an exploratory run to see 

if more informative priors were needed on the item parameters. 

Contributions to the IRT literature (Hambleton, 1989; Lord, 1975; Thissen and 

Wainer, 1985; de Gruijter, 1984; Swaminathan and Gifford, 1986) suggest that 

informative priors should be attached to item parameters if (a) the slope is large 

(at least 2.0) and (b) the value bj - 2/aj < -k where bj is the estimated threshold 

(difficulty) for item i, ajis the estimated slope (discrimination) for item i, and k is 

some positive constant (Lord suggests k = 4 for large samples). Using these 

guidelines, we attached a prior to the guessing parameters of items 2 and 88, and 

to the slopes of items 56 and 89. The guessing parameter priors are accomplished 

by attaching beta distribution parameters so that the prior mean is l/2k while 

mamtaining the restriction that a + ß = 20. For the slope priors, the mean was 

again set to 1 but the standard deviation was set to a value much smaller than the 

default (0.085 instead of 1.645) to keep the slope estimate from wandering off to a 

large number. In this multiparameter estimation, the likelihood surface may 

have many local maxima, and the goal is to initialize the calibration at a point in 

the likelihood surface that returns values consistent with historical IRT results. 

After imposing these priors and increasing the number of iterations to 50, a new 

BILOG file was created for a second calibration. However, it should be noted 

that the attached priors on the slopes resulted in their new estimates actually 

being higher (an unexplainable phenomena in BILOG that should not occur with 

extremely strong priors). So, a third calibration was run that just attached the 

priors to the guessing parameters. Unfortunately, the results were contrary to 

the intervention and so we returned to the original estimation without 

intervention, but now increasing the iterations to 50. 
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Using the results of this calibration, maximum likelihood estimation of the 6 

distribution was conducted while holding the item parameters fixed at their 

estimated values. The score vector was then rescaled so that the weighted scores, 

without regard to group membership, would have an N(0,1) distribution. The 

rescaling transformation preserves the Number Right True Score (NRTS) values 

that were available before the rescaling by modifying the aj, bv and 6 values. 

The weighted values of 6 for each group are shown in Table A.l and Figure A.l. 

Table A.l 

Weighted 6 

Cohort Test N Mean SD Minimum Maximum 
Both 39,926 0.00 1.00 -3.82 3.37 
HSB All 25,690 -0.15 1.06 -3.82 3.37 
NELS All 14,236 0.15 0.91 -2.25 2.84 
NELS NELS low 2,554 -0.77 0.53 -2.25 0.75 
NELS NELS medium 7,717 0.06 0.71 -2.20 2.34 
NELS NELS high 3,965 1.21 0.51 -0.45 2.84 

Number Right True Scores and Number Right Formula 
Scores 

The vector of 9 values can be passed through the item parameters from the HSB 

test (i = 1, ,38 items) or the NELS test (i = 1,..., 70 items) to get an expected 

probability of answering item i correctly for student n (n = 1,..., N), which will 

be called PJn)(6). The number right true score for the nth student is ^PJ^tO). 

For each student, we computed a NRTS using the HSB scores (H_NRTS) and the 

NELS (N_NRTS) scores. To get the Number Right Formula Scores (NRFS) for the 

HSB test, we used H.NRFS = H-NRTS - (38 - H_NRTS)/3, where 38 is the 

number of items and 3 is the number of alternatives minus 1. Similarly, a NRFS 

was computed for NELS (N_NRFS), but 70 and 3.328571 (the mean number of 

responses -1) were used in the transformation. 

Note that all 70 item parameters were used for assigning NRTS and NRFS to 

students with NELS parameters even though each NELS student was 

administered only 40 of the 70 questions depending on his or her ability group. 

It is possible to construct a set of scores based only on each test form, but data 

exploration suggested this was unnecessary. Table A.2 is a summary of the 

estimated NRFS values by test form. The correlations of the NRFS in Table A.3 

show that the estimates are stable regardless of the item parameters used. 
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Figure A.l—Distributions of 9 by Group 

Figure A.2 shows the NRTS by actual number of items answered correctly 

(jittered) by test form and cohort. One would expect the two NRTS and actual 

number of items answered correctly to have a strong positive correlation. One 

would also expect the estimates to be more stable as the number of correct items 

approaches 38 since, in lower values of "CORRECT," the items answered 

correctly by each student may be of varying difficulty. But, as n —> 38, the 

correctly answered items become the same for each observation. 
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Cohort Test N Variable Label Mean    SD   Range 

HSB HSB 25,690  PCT_CORR 
H_NRFS 
N.NRFS 
S_H_NRFS 
S_N_NRFS 
SCALE 

NELS        NELShigh    3,965    PCT_CORR 
H_NRFS 
N.NRFS 
S_H_NRFS 
S_N_NRFS 
SCALE 

NELS    NELS medium 7,717    PCT_CORR 
H_NRFS 
N_NRFS 
S_H_NRFS 
S_N_NRFS 
SCALE 

NELS NELS low    2,554    PCT_CORR 
H_NRFS 
N_NRFS 
S_H_NRFS 
S_N_NRFS 
SCALE 

Percent correct 0.51 0.22 1.00 

HSBNRFS 13.44 10.78 40.50 

NELS NRFS 23.54 17.81 75.86 

HSB NRFS standardized -0.14 1.01 3.78 

NELS NRFS standardized -0.14 1.02 4.33 

6 scaled to weighted N(0,1) -0.15 1.06 7.19 

Percent correct 0.63 0.15 0.88 

HSB NRFS 28.90 5.05 29.53 

NELS NRFS 48.66 8.94 52.87 

HSB NRFS standardized 1.30 0.47 2.76 

NELS NRFS standardized 1.29 0.51 3.02 

6 scaled to weighted N(0,1) 1.21 0.51 3.29 

Percent correct 0.54 0.16 0.98 

HSB NRFS 15.36 8.21 38.46 

NELS NRFS 26.73 13.08 69.87 

HSB NRFS standardized 0.04 0.77 3.59 

NELS NRFS standardized 0.04 0.75 3.99 

6 scaled to weighted N(0,1) 0.06 0.71 4.55 

Percent correct 0.47 0.14 0.93 

HSB NRFS 5.48 4.77 26.26 

NELS NRFS 11.01 8.19 44.77 

HSB NRFS standardized -0.88 0.45 2.45 

NELS NRFS standardized -0.86 0.47 2.55 

0 scaled to weighted N(0,1) -0.77 0.53 3.00 

Table A.3 

Weighted Correlations Among Scales 

PCT CORR  H NRFS   N NRFS S H NRFS   S_N_NRFS SCALE 
PCT_CORR 
H_NRFS 
N.NRFS 
S_H_NRFS 
S_N_NRFS 
SCALE 

1.00 0.92 0.92 0.92 0.92 0.91 

1.00 1.00 1.00 1.00 0.97 

1.00 1.00 1.00 0.99 

1.00 1.00 

1.00 

0.97 

0.99 

1.00 
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Figure A.2—Number Right True Score by Number Correct, by Group 
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B. Subsample Noncomparability 

The HSB and NELS surveys were intended to represent the population of 
students in the years of their administration. The degree to which they meet this 
goal depends on how well they are designed, implemented, and weighted. For 
example, their design must incorporate a good sampling frame for schools; their 
implementation must obtain a high rate of response; and the weighting of data 
must reflect both design factors (e.g., differences in the probability of sampling 
different types of schools) and rates of nonresponse. 

Analysis of the data from these surveys, however, is typically carried out on one 
or more subsamples of the data. It is useful to think of analysis subsamples as 
designed and ad hoc. Designed subsamples are addressed in the design of the 
survey, for example, by creating appropriate weights or by "freshening" a 
sample to replaced cases lost by attrition. For example, because not all students 
in NELS and HSB who took the base-year test in each survey took the first 
follow-up tests, different weights are provided for analyzing the base-year and 
first-follow-up test data. Ad hoc subsamples arise in the course of carrying out 
analyses. For example, if one uses two or more variables together in an analysis, 
missing data on each of the variables will make it necessary to drop some cases, 
and the remaining subsample may be appreciably different from any subsample 
for which weights are provided. 

Even if the survey is well designed and implemented and appropriately 
weighted, the subsamples used in analysis may differ enough from the total 
sample to threaten the validity of findings. These differences may make findings 
unrepresentative of the population and may bias comparisons between surveys, 
such as our comparisons between HSB and NELS. We use the term "subsample 
noncomparability" to refer to these differences between analysis subsamples and 
the entire sample. Substantial subsample noncomparability may arise when ad 
hoc sample loss is sizable and nonrandom, and it may also arise when the 
measures taken in response to design subsample differences, such as freshening, 
are not sufficient to offset differences between the subsample and the sample. 

In longitudinal studies, a primary source of noncomparability is attrition over 
time, but there are other potentially important sources as well. When surveys are 
refreshed periodically to offset attrition (as was NELS but not HSB), differences 
between the freshening sample and the cases lost by attrition may leave 
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noncomparability or even add to it. Both instrument-level and item-level 

nonresponse can contribute to noncomparability, as can unusable responses. 

A standard method for addressing noncomparability is the use of design 

weights, i.e., weights reflecting the probability of selection in the design and the 

probability of nonresponse. For example, the differences between the transcript 

and questionnaire subsamples of NELS are addressed by the use of separate 

design weights for each subsample, which are intended to make each subsample 

representative of the population. However, design weights may not be enough 

to maintain representativeness. Weighting may be insufficient, for example, 

when nonrandom sample loss occurs within the strata used to define weights. 

Weighting can also be insufficient when ad hoc subsamples differ substantially 

from those addressed by weights that are available or can be constructed from 

other data in the survey database 

We had several reasons to be concerned about noncomparability of the analysis 

samples used here. We used test data from the first follow-up of HSB and the 

second follow-up of NELS, and in both samples there was considerable attrition 

by the time of the relevant follow-up data collection. Our analysis required that 

students have both transcript data and complete follow-up test data. This 

requirement caused substantial sample loss. Neither the HSB nor the NELS 

database contained weights specifically designed for this subsample, and neither 

contained the design weight factors and nonresponse factors needed to construct 

appropriate analysis weights. Our preliminary tabulations suggested that the 

students lost from our analysis sample because of the requirement that both test 

and transcript data be present differed appreciably from those retained. Valerie 

Lee alerted us to possible problems with the weights assigned to students in the 

NELS freshening samples.1 

For our purposes, the primary sources of sample noncomparability were attrition 

over time and sample loss from our requirement that students have test scores as 

well as transcripts. This combined loss cannot be assessed with a single 

comparison, because the students added by freshening lack a base-year test 

(making it impossible to determine whether they were comparable to the 

students they replaced in terms of initial achievement), and those lost because of 

attrition or because of the lack of follow-up testing cannot be compared in terms 

of performance on the follow-up test. Therefore, the effect of these factors and 

the adequacy of any particular set of weights had to be determined from a 

number of different contrasts. 

•^Personal communication, March 8,1999. 
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This appendix describes the design of the noncomparability analysis, the 

findings, and the restandardization of weights. 

Design of the Noncomparability Analysis 

Table B.l shows the contrasts used to examine the practical impact of sample 

noncomparability and the variables that could be evaluated for each. For 

example, the subsamples specified by the first contrast could be evaluated in 

terms of differences in GPA, demographics, and baseline scores but not in terms 

of differences in follow-up scores. All four of the contrasts among groups could 

be evaluated in terms of GPA and demographics, but only the first and fourth 

contrasts could be evaluated in terms of their effects on scores. 

The purposes of the four contrasts are as follows: 

1. This contrast looks at combined sample loss from attrition and instrument 

nonresponse other than follow-up test nonresponse. Nonresponse to the 

follow-up test is too substantial to be considered here and is evaluated 

separately. Cases that lack baseline scores or valid GPAs had to be excluded 

from this contrast. 

2. By comparison with contrast 1, this one shows the effect of freshening, 

without the extra selection criterion of a present follow-up score. Baseline 

scores cannot be used as an outcome here because the freshening sample 

lacks them. 

Table B.l 

Contrasts Used to Test Sample Noncomparability 

Demo-      Baseline      Follow- 
Samples GPA      graphics      Scores      Up Scores 
1) Base sample vs. transcript sample, no 

freshening XXX 

2) Base sample vs. transcript sample, 
with freshening X X 

3) Total refreshed transcript sample, 
total vs. those with follow-up test X X 
scores 

4) Refreshed vs. unrefreshed transcript 
samples, both with follow-up scores X X X 
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3. Comparison of this with contrast 2 will show the effect of sample loss from 

students who lack follow-up tests. We cannot use tests as an outcome 

because students in the freshening sample cases lack baseline test scores, and 

many in this group lack follow-up scores. 

4. Comparison of this with contrast 2 will show whether imposition of the extra 

criterion of a present follow-up score undermines the effectiveness of the 

freshening, and it also allows use of a test score outcome. 

Findings 

The contrasts above were examined separately for HSB and NELS. The findings 

shown by HSB and NELS were fundamentally different, but in both cases, the 

analyses suggested that simply weighting our analysis sample with the 

transcript-file weights would provide reasonable distributions of test scores and 

grades. 

HSB 

Sample loss from the baseline sample to our analysis sample was very large. 

Only 54 percent of the base-year sample had transcripts, and only 50 percent had 

both transcripts and follow-up test scores. 

The effect of applying the HSB transcript weights is to raise the distribution of 

GPA slightly. Using the transcript rather than the base-year weights for the 

subsample with transcripts raises the mean by 0.03 standard deviation. This 

difference in means suggests that the strata that lost more students going from 

the base year to transcript samples tend to have higher GPA, because weighting 

with the transcript weights—which should inflate the counts of cells that lost 

relatively many students—raises mean GPA. 

The freshening sample was small but not trivial (7.5 percent of students with 

transcripts). This small freshening sample has very low GPA and follow-up 

math scores (roughly -0.4 SD), and its inclusion drops the mean GPA and test 

scores by 0.05 or 0.06 SD. 

Despite the huge sample loss, the subgroup with both test scores and transcripts 

has a mean base-year mathematics score fairly similar to that of the full base-year 

math sample—about 0.05 higher after reweighting (that is, comparing the full 

sample weighted by the base-year weights to the subsample with transcripts 

weighted by the transcript weights). This necessarily uses the unrefreshed 

sample. Adding in the freshening sample would drop mean follow-up 
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mathematics scores by nearly 0.06 SD. Thus, one might conclude that the effect 

of freshening and reweighting, in combination, is likely to leave mean scores 

about where they were in the base-year sample. This in turn suggests that the 

GPA distribution of the analysis subsample is probably reasonable. 

NELS 

Using the transcript rather than the base-year weights for the transcript sample 

drops the mean GPA by 0.13 standard deviation. This suggests that the strata 

that lost more students tend to have lower GPA, because weighting with the 

transcript weights—which should inflate the counts of cells that lost relatively 

many students—lowers mean GPA. 

The effect on base-year test scores is in the same direction but smaller. Using the 

transcript weights rather than base-year weights to tabulate base-year 

mathematics scores drops mean scores by roughly 0.07 SD. 

The effect of freshening on these various means is typically very small, partly 

because the freshening subsample is so small. Including the freshening sample 

drops the mean of follow-up mathematics scores by only 0.03 standard deviation. 

Freshening did an imperfect job of mamtaining the demographic composition of 

the sample in the face of loss from attrition. The refreshed, reweighted transcript 

sample has slightly fewer whites and shows a slightly different distribution of 

parental education than the original sample. 

Comparing the base-year mathematics scores for the base year and transcript 

samples, weighted with their own appropriate weights, shows that the mean for 

the transcript sample is higher by less than 0.04 SD. The follow-up mathematics 

contrast between the refreshed and unrefreshed sample noted above suggests 

that including the freshening students would drop that mean a bit, perhaps 0.02 

or 0.03 SD, if we had base-year mathematics scores for them, leaving only a very 

small difference in base-year mathematics scores. It is probably reasonable to 

expect a similar effect on GPA. This suggests that the use of the transcript 

weights on the refreshed sample is reasonable. 

Restandardizing the Transcript Weights 

The average sampling weight is large because the weights inflate the counts of 

sampled individuals to match the estimated population. For our purposes, 

however, this inflation of counts was neither necessary nor desirable. It is 

unnecessary because all of our analyses reflect the relative size of groups rather 
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than their absolute size. It is undesirable because a large ratio of the sum of the 

weights to the count of sampled individuals can bias the results because of the 

weighting algorithms used in some commercial software. Accordingly, we first 

standardized the weights so that the sum of the weights equaled the count of 

students in the analysis sample. This adjustment created another problem, 

however: For some groups with relatively small weights, variance estimates 

became seriously inflated because the term (X wi _ 1)/ where Wj is the weight for 

individual i, became very small. Accordingly, our final weights were 

standardized such that Xwi =10 * XN. 
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C. Analysis of the Feasibility of Using SAT 
and ACT Scores as Covariates 

Mathematics is the only subject for which we have linked HSB and NELS test 

scores that permit a control for changes in proficiency when modeling changes in 

grading standards. Simple raw changes in grade distributions, however, 

indicated that mathematics may differ from some other subjects in important 

ways, and mathematics showed relatively little raw change in grades. 

Accordingly, we carried out a number of analyses to determine whether it would 

be practical to use SAT or ACT scores to control for differences in proficiency 

between the 1982 HSB cohort and the 1992 NELS cohort. If SAT or ACT scores 

could be used in this way, it would be possible to model changes in subjects 

other than mathematics, because SAT and ACT scores are equated over time. 

A principal threat to using SAT and ACT scores as controls for proficiency 

changes is the possibility that the selectivity of the self-selected subsamples of 

students who took the tests changed appreciably in ways that might change the 

relationships between scores and grades. Accordingly, we examined changes in 

the characteristics of these self-selected groups and changes in the relationships 

between scores and grades. These analyses suggested that it would be 

problematic to use SAT or ACT scores in this manner. 

The proportion of students taking the SAT, ACT, or both increased sharply 

between the two cohorts. Roughly 20 percent of students in HSB took each of the 

tests, and less than 40 percent took one or the other (Table C.l). In contrast, 

roughly one-third of the students in NELS took each of the tests, and nearly 60 

percent took one or the other. 

This increase was not uniform across demographic groups. The largest 

proportional increases in the percentages of students taking both tests was 

among Native Americans (who constitute a very small percentage of test-takers) 

Table C.l 

Weighted Proportions of Students Taking 
ACT and SAT, HSB and NELS 

 Took ACT      Took SAT    Took Either 
HSB 0.19 0.21 0.37 
NELS 0.32 0.37 0.59 
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and Hispanics (Table C.2). The percentages of white and Asian students taking 

the test grew the least. The percentage of African American students taking the 

test grew somewhat more than that of whites. Thus, the increase in the 

proportion of students taking the tests stemmed in substantial part from the 

relatively faster growth in test-taking by historically lower-scoring groups. 

It is also important to consider changes in the composition of the test-taking 

population, which is determined by both the changes in selectivity within groups 

and the changes in size of the groups. Because the various racial/ethnic groups 

grew at substantially different rates during the decade between HSB and NELS, 

changes in the test-taking population were very different from changes in 

selectivity within groups. The percentage of test-takers who identified 

themselves as Asian more than doubled (Table C.3), an increase that was offset 

by much smaller changes in the percentages who identified themselves as either 

African American or Hispanic. The percentage of test-takers who identified 

themselves as white stayed nearly constant. 

Table C.2 

Percentage and Change in Percentage of Students Taking ACT 
and SAT by Race/Ethnicity, HSB and NELS 

Race/Ethnicity 
% Taking 

ACT 
% Taking 

SAT 
% Taking 

Either 
HSB Native American 12 9 20 

Asian 12 35 45 
African American 9 15 24 
Hispanic 
White 

9 
22 

12 
24 

20 
41 

NELS Native American 18 29 45 
Asian 26 55 66 
African American 21 28 44 
Hispanic 
White 

21 
36 

30 
38 

43 
64 

Difference, NELS-HSB Native American 7 21 25 
Asian 14 20 21 
African American 12 13 21 
Hispanic 
White 

11 
14 

18 
15 

23 
23 

Percentage change, 
HSB to NELS 

Native American 
Asian 

58 
115 

244 
59 

126 
48 

African American 128 85 86 
Hispanic 
White 

120 
65 

149 
63 

117 
55 
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Table C.3 

Weighted Composition of Groups Taking ACT and SAT 
by Race/Ethnicity, HSB and NELS 

% Taking % Taking % Taking 
 Race/Ethnicity      ACT SAT        Either 

HSB Native American 0.01 0.01 0.01 
Asian 0.02 0.05 0.04 
African American 0.07 0.10 0.10 
Hispanic 0.12 0.12 0.12 
White 0.78 0.72 0.74 

NELS Native American 0.01 0.01 0.01 
Asian 0.06 0.11 0.08 
African American 0.06 0.06 0.06 
Hispanic 0.07 0.09 0.08 
White 0.81 0.74 0.77 

Difference, NELS-HSB Native American 0.00 0.00 0.00 
Asian 0.04 0.06 0.04 
African American -0.02 -0.04 -0.03 
Hispanic -0.05 -0.04 -0.04 
White 0.03 0.02 0.03 

Percentage change, Native American ^8 14 -19 
HSB to NELS Asian 194 118 117 

African American -24 -38 -33 
Hispanic -39 -31 -35 
White 4 3 5 

When students are classified by their mother's highest level of educational 

attainment, differences in selectivity changes were more modest but still 

appreciable. The percentage of students taking either college admissions test 

increased in all groups, from a low of 35 percent to a high of 72 percent (Table 

C.4). However, these percentage changes do not show a consistent pattern across 

educational groups. 

Coupled with changes in maternal educational attainment, these changes in 

selectivity produced a substantial change in the educational profile of the 

families of test-takers. The percentage of test-takers whose mothers had at least a 

college education increased substantially, whereas the percentage of students 

from most other educational groups dropped to offset this (Table C.5). 

Changes in selectivity also varied substantially but inconsistently among income 

groups. The largest increase was among students in the lowest income category, 

but the pattern is otherwise inconsistent (Table C.6).  The income distribution 

among families with children changed considerably over the decade, however, 

and the result was a more striking change in the income distribution of students 
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Table C.4 

Percentage and Change in Percentage of Students Taking ACT and SAT 
by Mother's Education, HSB and NELS 

% Taking % Taking % Taking 
Mother's Education ACT SAT Either 

HSB Less than high school 11 11 21 
Trade/vocational 18 23 37 
High school graduate 19 19 36 
Some college 26 28 48 
Finished college 26 41 60 
Master's degree 25 37 56 
Ph.D., M.D., etc. 17 36 49 

NELS Less than high school 17 19 33 
Trade /vocational 33 39 65 
High school graduate 32 31 56 
Some college 33 44 65 
Finished college 37 54 75 
Master's degree 42 58 82 
Ph.D., M.D., etc. 54 66 83 

Difference, NELS- Less than high school 6 8 12 
HSB Trade/vocational 15 16 27 

High school graduate 13 12 20 
Some college 7 16 17 
Finished college 11 13 15 
Master's degree 16 22 26 
Ph.D., M.D., etc. 37 30 34 

Percentage change, Less than high school 58 70 58 
HSB to NELS Trade / vocational 80 72 72 

High school graduate 71 61 57 
Some college 29 56 35 
Finished college 42 31 26 
Master's degree 64 59 48 
Ph.D., M.D., etc. 226 83 70 

taking college admissions tests. The percentage of test-takers from the top 

income group increased by 44 percent, whereas the percentage from all other 

groups stayed constant or declined (Table C.7). 

These changes in selectivity were accompanied by appreciable changes in the 

relationships between scores on these tests and high school grades, and these 

changes were inconsistent between the SAT and ACT. The correlation between 

SAT-I math scores and the math GPA measures dropped between HSB and 

NELS, from 0.55 to 0.43 in the case of academic GPA (Table C.8, shaded cells). In 

the same subsample of students, the correlation between the linked HSB /NELS 

math 6 scores and academic GPA stayed essentially constant, at just below 0.60. 

In contrast, the correlation between ACT math scores and math GPA 
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Weighted Composition of Groups Taking ACT and SAT 
by Mother's Education, HSB and NELS 
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%of %of %of 
ACT SAT Test 

Mother's Education Takers Takers Takers 
HSB Less than high school 0.11 0.10 0.11 

Trade /vocational 0.10 0.10 0.10 
High school graduate 0.37 0.32 0.35 
Some college 0.20 0.18 0.19 
Finished college 0.14 0.18 0.16 
Master's degree 0.07 0.08 0.07 
Ph.D., M.D., etc. 0.01 0.02 0.02 

NELS Less than high school 0.07 0.06 0.07 
Trade/vocational 0.13 0.12 0.13 
High school graduate 0.35 0.28 0.32 
Some college 0.10 0.11 0.10 
Finished college 0.20 0.24 0.21 
Master's degree 0.12 0.14 0.12 
Ph.D., M.D., etc. 0.04 0.04 0.04 

Difference, NELS- Less than high school -0.05 -0.04 -0.04 
HSB Trade/vocational 0.03 0.02 0.03 

High school graduate -0.03 -0.05 -0.03 
Some college -0.10 -0.07 -0.08 
Finished college 0.06 0.06 0.06 
Master's degree 0.05 0.06 0.05 
Ph.D., M.D., etc. 0.03 0.02 0.02 

Percentage change Less than high school -42 -38 -38 
HSB to NELS Trade /vocational 29 21 32 

High school graduate -7 -14 -9 
Some college -49 -40 -A4 
Finished college 46 33 38 
Master's degree 76 68 68 
Ph.D., M.D., etc. 247 92 92 

increased between HSB and NELS, from below 0.50 to above 0.60 (Table C.9, 

shaded cells). In the ACT subsample, the correlations between the linked 

HSB/NELS math 9 scores and academic GPA also increased. 

Given these indications of appreciable and inconsistent selectivity differences for 

which it would not be feasible to control, we decided not to use the SAT and 

ACT scores to adjust for differences in proficiency. 
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Table C.6 

Percentage and Change in Percentage of Students Taking 
ACT and SAT by Income Group, HSB and NELS 

Income % Taking % Taking % Taking 
Group ACT SAT Either 

HSB 1 10 10 20 
2 15 15 29 
3 18 18 33 
4 23 27 45 
5 22 35 50 

NELS 1 22 19 37 
2 25 20 40 
3 32 31 56 
4 39 43 69 
5 34 66 82 

Difference, NELS- 1 11 8 18 
HSB 

2 10 5 12 
3 14 14 23 
4 17 16 25 
5 12 31 32 

Percentage change, 1 113 79 89 
HSB to NELS 

2 68 33 40 
3 81 79 70 
4 74 60 55 
5 52 88 64 
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Table C.7 

Weighted Composition of Groups Taking ACT and SAT 
by Income Group, HSB and NELS 

Income 
Group 

% of ACT 
Takers 

% of SAT % of Test 
Takers     Takers 

HSB 1 
2 
3 
4 
5 

0.04 
0.12 
0.25 
0.45 
0.14 

0.04         0.04 
0.10         0.11 
0.22         0.24 
0.46         0.45 
0.19         0.16 

NELS 1 
2 
3 
4 
5 

0.05 
0.09 
0.21 
0.48 
0.17 

0.03         0.04 
0.06         0.07 
0.18         0.20 
0.44         0.46 
0.28         0.22 

Difference, NELS- 
HSB 

1 
2 
3 
4 
5 

0.00 
-0.03 
-0.04 

0.03 
0.04 

0.00         0.00 
-0.04       -0.04 
-0.04       -0.04 
-0.01         0.01 

0.10         0.07 

Percentage change, 
HSB to NELS 

1 
2 
3 
4 
5 

10 
-27 
-16 

7 
26 

-9             4 
-43          -35 
-18          -16 
-3              2 
53            44 

Table C.8 

Correlations Between Math GPA and Math Scores, SAT Sample Only (Listwise 
Deletion), Weighted (HSB Above Diagonal, NELS Below Diagonal) 

Academic Overall HSB-NELS 
Math GPA Math GPA Mathö SAT Math 

Academic math GPA 1 0.99 0.57 0.55 
Overall math GPA 0.99 1 0.56 0.55 
Math© 0.59 0.59 1 0.82 
SAT math 0.43 0.42 0.69 1 

NOTE: Correlations disattenuated for measurement error in math 6. 
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Table C.9 

Correlations Between Math GPA and Math Scores, ACT Sample Only (Listwise 
Deletion), Weighted (HSB Above Diagonal, NELS Below Diagonal) 

Academic Overall HSB-NELS 
Math GPA Math GPA Mathö ACT Math 

Academic math GPA 1 0.98 0.52 0.48 
Overall math GPA 0.99 1 0.53 0.48 
Mathf? 0.61 0.61 1 0.79 
ACT math 0.64 0.63 0.82 1 

NOTE: Correlations disattenuated for measurement error in math 6. 
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D. Hierarchical Linear Models Used to 
Explore the Predictors of Grades 

This appendix describes the multilevel models used in Sections 5 and 6. 

Section 5 

The correlation of grades with tested proficiency was estimated by regressing 

academic mathematics GPA on our linked test scores, after adjusting for 

differences in the reliability of the HSB and NELS tests, as described in 

Appendix E. 

Mean shifts in grades were estimated with a series of hierarchical models. These 

were used instead of simple regression models to account for clustering of 

students within schools. The first stage simply reestimated raw differences in 

grades, holding neither scores nor coursework constant. This was done to make 

the estimates from this series of models internally consistent. The second stage 

added controls for test scores, and the third added controls for coursework as 

well. We did not estimate models that included coursework but not scores. 

To estimate these models, the NELS and HSB samples were pooled after 

restandardizing the weights to give the two cohorts equal weight in the pooled 

sample. Our estimates of 6 were centered at the grand mean in the pooled 

sample. 

The base model is a three-level model (students, schools, and cohorts) estimated 

in the pooled sample. Let Y denote a student's test score, in the restandardized 

IRT 9 metric used throughout this report. Let C indicate cohort, i index students, 

;' index schools, and k index cohorts (0 = HSB, 1 = NELS). Cohort is a fixed effect 

in all of these models. The base model is then 

Yijk=ßojk + £ijk (D.1) 

ßojk = rooo + 7oo A + Ujk (D-2) 

Yijk = rooo+rooiC+Ujk+£ijk = rooo+rooiC+njk (D-3) 
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where e^ is the individual-level random error within schools, Ujk is the random 

error in school means, and r,yjt is the random individual-level error in the 

combined equation. 

The second stage adds scores (grand-mean-centered 9) at the student level. The 

slope of grades on 6 differs considerably across the cohorts. Hence this model 

must include the interaction of cohort with 8. 

Yijk = ßojk + ßijAjk + eijk (D.4) 

ßojk = 7ooo + 7ooic + ujk P-5) 

ßijk=Ywo+Ymc P-6) 

% = 7ooo + 7ooiC + 7ioo% + YmCOijk + rijk (D.7) 

The slope in Eq. D.6 is fixed because cohort is a fixed effect. 

The final stage adds to the previous stage a vector of coursework variables, X. 

The parameters for these variables are assumed to be fixed. The model is 

Xr/Tc = ßojk + ßljk^ijk + ß200 *ijk + £ijk (D-8) 

ßojk = 7ooo + 7ooiC + ujk p.9) 

A/it = 7ioo+rniC (D.10) 

% = 7ooo + 7ooiC + C7100 + 7inO öijk + ß^00 X^ +rijk (D.ll) 

Section 6 

The models described in Section 6 are two-level hierarchical models, with 

students as level-1 observations and schools as level-2 observations. 

Progressively more complex models were constructed and then pared back, 

based on the apparent importance of specific variables. The initial models were 

"fixed coefficient" models (Kreft and DeLeeuw, 1998)—that is, the level-1 

coefficients were fixed across schools. Subsequent stages entailed allowing the 

coefficient for student test scores to vary randomly, adding level-1 interactions 

with scores, and adding cross-level interactions with scores, i.e., variations in 

level-1 slopes as a function of school characteristics. 

Two of the initial variables were "macro" variables, that is, characteristics of 

schools that are not aggregates of student characteristics. These were dummies 

for rural and urban school location; both were dropped because they had little 
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predictive power. All other school-level variables were aggregates of student- 

level variables, and any variable that was included at either level was included in 

the other. 

The initial, fixed-coefficient models can be expressed as follows, where X« is a 

vector of values on predictors X for individual i in school;, 0,y is the test score of 

student i in school /, fa is the coefficient of test scores, ß2 is a vector of 

coefficients for the student-level variables, Zj is a vector of values on school-level 

predictors for school /, yx is a vector of coefficients for the school-level variables, 

£ ij and UJ are random error terms in the student and school equations, and r,y is 

the student-level random error in the combined equation: 

Vij = ßoj + My + ß2*ij +£ij (D.12) 

ßoj=Yoo + y'iZj+Uj P-13) 

y\j = 7oo + ßifiij + ßaXij + YiZj +ri} (D.14) 

Once the macro-level variables were dropped, all variables in Z were the school 

means of the student-level variables in X. Note that fa and all elements of ß2 

are constant across schools and that therefore neither is subscripted with a / in 

these equations. 

The second stage of the analysis allowed the student-level slope of GPA on test 
scores, fa, to vary randomly. This model is 

Vij = ßoj + ßijOij + ßaXij +£ij p.15) 

ßoj=7oo + yiZj+Uj P.16) 

ßij=Yw+Uj (D.17) 

Vij = 7oo + Yvftij + ß2*ij+YiZj +i\j (D.18) 

Asterisks are used to differentiate terms from similar terms in differently 

specified models. 

The third stage adds level-1 interactions between scores and selected background 

variables, ßj> 0,y, Xjj, where Xjj is the subset of Xjj for which interaction terms 

were calculated. This makes the combined equation 

Vi) = 7oo + Yvßij + ß2Xij+ ßs 0;y X»+yiZj +7jJ* (D.19) 

In the final stage, cross-level interactions between school-level variables and 

scores were added. That is, the random variation in the student-level slopes on 
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scores in Eq. D.17 was modeled as a function of selected school-level variables 

A/=7io+(Y2Zj) + "" P-2°) 

This makes the combined equation: 

yij = 700 + [7io + YaZf ] Bi} + ß^Xlj+ß^ 6ij Xij+ yiZj +^* (D.21) 

Because a primary purpose of the models was to explore context effects, that is, 

the effects of school characteristics above and beyond the effects of individual 

characteristics, none of the student-level variables were centered around their 
school means. Scores (math 6) was grand mean centered to facilitate the 

interpretation of interactions. 



75 

E. Estimating and Adjusting for Reliability 
of the HSB and NELS Tests 

Comparisons between models estimated using HSB and NELS could be biased 

by differences in the reliability of the tests used in the two surveys. HSB used a 

uniform test: All tested individuals in a grade were administered the same form. 

NELS used adaptive testing, in which students in grades 10 and 12 were 

administered one of three forms differing in difficulty depending on their 

performance on the uniform test administered in grade 8. By targeting items 

more closely to a student's level of proficiency, adaptive testing can markedly 

increase the reliability of scores. As a result, comparisons across the cohorts of 

models using test scores could be biased by differences in reliability. 

Adjustments for differences in reliability were made more difficult by the 

methods used to scale the two tests and the analytical models used in this report. 

Estimating Overall Reliability 

The HSB and NELS tests were scaled using three-parameter logistic IRT models. 

In IRT models, in contrast to some traditional scaling models, no overall estimate 

of reliability is estimated. Instead, the definition of reliability is conditional on 

student proficiency. 

In some traditional models, reliability is often assumed to be constant across 

levels of performance. In this case, the standard error of measurement (SEM) is a 
simple function of the reliability, rxx> 

SEM = [c72
x(l-rxx,)]

1/2 (R1) 

That is, the SEM is simply the root of the error variance. 

In contrast, in IRT models, the analog of the SEM, called the standard error of 

estimation (SE), is assumed to be conditional on an individual's level of 

performance. The SE is defined as 

SE(6) = nL= (E.2) 
4Ü6) 

where 6 is the IRT estimate of proficiency and I, the test information function, is 

the sum of the item information functions at a given level of 6. 
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For any given 6, the reliability of the estimate can therefore be obtained by 

solving Eq. E.l for rxx> and substituting in the IRT definition of the SE from Eq. 

E.2: 

%,=1 1
—K (E.3) 

An approximation of the overall reliability of the test can therefore be obtained 

by taking a weighted average of the information values in Eq. E.3, where the 

weights are the design weights used in the analysis: 

ree'=l~-^Y^Um (R4) 

Because BILOG provides a graphical display of test information as a function of 

9 but no machine-readable numerical estimates, this reliability coefficient was 

estimated using the information values from graphical output in intervals of 0.25 

9 and calculating weighted averages of those values. This procedure yields for 

our samples estimated reliabilities of 0.917 for HSB and 0.954 for NELS, both high 

but discrepant enough to leave the possibility of bias in comparisons across the 

two cohorts. 

Accounting for Reliability Differences in Analysis 

Ways to account for measurement error in the dependent variable in multilevel 

models are poorly developed. To obtain a rough estimate of the severity of this 

problem in our models, we specified OLS models with individual and aggregate 

variables used in some of our multilevel models and estimated them with and 

without correction for measurement error. This indicated that some adjustments 

for measurement error were warranted. 

The most complete OLS model used in this analysis was a contextual model that 

included 14 student-level variables, the school aggregates of these variables, and 

two macro variables (variables that do not vary within level 1 units). The 

student-level variables were dummies for African American, Hispanic, and 

female; four dummies for income groups; a dummy for college-prep track; math 

9; mother's education; and four dummies indicating the highest level of 

mathematics course taken. The two macro-level variables were dummies for 

rural and urban school location. 
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Table E.l presents the differences in parameter estimates from NELS and HSB 

(HSB subtracted from NELS), with and without correction for measurement 

error, and the arithmetic and percentage differences caused by the correction. 

Variables are sorted in descending order of the absolute value of the percentage 

differences. Twelve of the 30 variables had percentage differences in excess of 75, 

and seven showed percentage differences of 170 or greater. However, most of 

these variables had very small parameter estimates, and the large percentage 

differences therefore corresponded to very small and unimportant arithmetic 

differences in estimates. A few variables, however, showed both large enough 

parameter estimates and sufficient effect of reliability that their interpretation 

Table E.1 

Differences Between NELS and HSB: Estimates from Contextual Models 
With and Without Correction for Measurement Error 

Arithmetic Percentage 
Variable Uncorrected Corrected Difference Difference 
African American -0.001 -0.009 -0.008 598.5 
Income group 2 -0.001 0.003 0.004 -571.0 
Proportion algebra 1 0.003 0.020 0.016 509.6 
S mean proportion Hispanic 0.012 -0.036 -0.048 -385.4 
S proportion income group 5 -0.009 -0.036 -0.027 318.7 
S proportion income group 1 0.005 0.013 0.009 175.6 
S mean math 6 0.015 -0.011 -0.026 -170.4 
S proportion college prep -0.040 -0.005 0.035 -87.1 
S proportion female 0.016 0.002 -0.013 -86.2 
S mean proportion advanced -0.025 -0.004 0.022 -85.5 
Hispanic -0.019 -0.035 -0.016 85.0 
S proportion African American 0.071 0.015 -0.056 -78.4 
Income group 1 -0.020 -0.027 -0.007 35.8 
Intercept -0.136 -0.176 -0.040 29.1 
Proportion geometry -0.118 -0.094 0.024 -20.0 
College prep 0.072 0.085 0.013 18.5 
Proportion advanced -0.168 -0.142 0.027 -15.8 
S proportion income group 2 -0.093 -0.079 0.014 -15.3 
Math0 0.131 0.111 -0.020 -15.0 
Proportion algebra 2 -0.181 -0.155 0.025 -14.1 
S mean proportion algebra 2 -0.021 -0.019 0.003 -13.1 
S rural -0.023 -0.027 -0.003 13.1 
Income group 4 -0.010 -0.009 0.001 -12.4 
S mean mother's education 0.068 0.075 0.007 10.6 
Female -0.085 -0.092 -0.007 8.0 
Mother's education 0.016 0.017 0.001 4.8 
S urban 0.065 0.062 -0.003 -4.8 
Income group 5 0.043 0.041 -0.002 -4.5 
S mean proportion geometry -0.167 -0.162 0.005 -2.8 
S proportion income group 4 -0.102 -0.104 -0.002 2.0 
S mean proportion algebra 1 -0.250 -0.251 -0.001 0.5 

NOTE: Initial S denotes a school-level variable. 
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would be altered by correcting for unreliability. An example is the school 

proportion African American. 

Most important for our purposes is the effect of reliability differences on the 

parameter estimates for student-level mathematics 6. This effect was modest. 

However, because of the importance of this estimate for this report, the estimates 

of the correlations between grades and 8 (in the analysis of changing-correlation 

inflation) were corrected for unreliability. Because the interpretation of other 

coefficients is less important and the methods for correcting multilevel models 

are poorly developed, we did not correct the multilevel models for unreliability. 

Therefore, only sizable differences in the parameter estimates between HSB and 

NELS should be accepted with confidence. 
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